
1/3

December 22, 2010

The __fortran calling convention isn't the calling
convention used by FORTRAN

devblogs.microsoft.com/oldnewthing/20101222-00

Raymond Chen

Although the Microsoft C compiler supports a calling convention called
 __fortran ,
that’s

just what the calling convention is called;
its relationship with the FORTRAN programming

language is only coincidental.
The __fortran keyword is now just an old-fashioned

synonym for __stdcall .

Various FORTRAN compilers use different calling conventions;
the one I describe here

applies to the now-defunct
Microsoft Fortran PowerStation.

Fortran Powerstation pushes parameters on the stack right-to-left,
with callee-cleanup.
(So

far, this matches
 __fortran aka __stdcall .)
Function names are
converted to all-

uppercase, with an underscore
at the beginning and @n appended,
where n is the number of

bytes of parameters.
(This still matches __stdcall aside from the uppercase
conversion.)

As for how the parameters are passed, well, that’s where things
get weird.
FORTRAN natively

passes all parameters by reference.
This is the source of a famous classic FORTRAN bug

known as
constants aren’t.

 PROGRAM MYSTERY

 CALL MAGIC(1)

 PRINT *, 'According to the computer, 3 + 1 is ', ADDUP(3, 1)

 END

 FUNCTION ADDUP(I, J)

 ADDUP = I + J

 END

C What does this subroutine actually do?

 SUBROUTINE MAGIC(I)

 I = 9

 RETURN

 END

(It’s been a long time since I’ve written a FORTRAN program,
so I may have gotten some of

the details wrong,
but any errors shouldn’t detract from the fundamental issue.)

When you run this program, it says

https://devblogs.microsoft.com/oldnewthing/20101222-00/?p=11943
http://msdn.microsoft.com/en-us/library/aa278674(VS.60).aspx
http://msdn.microsoft.com/en-us/library/aa294334(VS.60).aspx

2/3

According to the computer, 3 + 1 is 12

How did that happen?
We called a function that adds two numbers together,
and instead of

getting 4, we get 12?

The reason is the subroutine MAGIC :
We passed it the constant 1 ,
and since all FORTRAN

parameters are passed by reference,
the assignment I = 9
modifies the constant 1.
In C:

int One = 1;

int Three = 3;

int Nine = 9;

void Magic(int *i) { *i = Nine; }

int AddUp(int *i, int *j) { return *i + *j; }

void main()

{

Magic(&One);

printf("According to the computer, 3 + 1 is %d\n",

 AddUp(&Three, &One));

}

Since Magic modified the constant One ,
any further use of the constant 1 ends up using

the value 9!
(According to the FORTRAN standard,
modifying a constant results in undefined

behavior.)

Okay, back to calling conventions.
Other significant differences between C and FORTRAN:
In

FORTRAN,
array indices begin at 1, not 0,
and arrays are stored in column-major order

rather than row-major as in C.

COMPLEX variables in FORTRAN
are stored as two floating point numbers
(corresponding

to the real and imaginary components).

Functions which return COMPLEX or
CHARACTER*(*)
are internally rewritten as subroutines

where the location to store the
return value is passed as a hidden first parameter.
(This is

analogous to how C returns large structures.)

The final commonly-encountered
weirdness of FORTRAN is that CHARACTER*n data types

(which are used to hold strings) are
passed as two parameters:
The address of the character

buffer,
followed by the size of the buffer (n).
Note that FORTRAN CHARACTER*n variables

are
fixed-length;
if you assign a string shorter than the buffer,
it is padded with spaces.
There

is no null terminator.

Anyway, I sort of got carried away with the FORTRAN calling convention.
It’s definitely more

complicated than just sticking
 __fortran in front of your function.
But at least the

__fortran keyword takes care of the
part that can’t be expressed in C.
The rest you can

manage on your own.

Raymond Chen

http://msdn.microsoft.com/en-us/library/aa293547(VS.60).aspx
http://msdn.microsoft.com/en-us/library/aa296568(VS.60).aspx
http://msdn.microsoft.com/en-us/library/aa236488(VS.60).aspx
http://msdn.microsoft.com/en-us/library/aa236488(VS.60).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

