
1/3

December 8, 2010

It rather involved being on the other side of this airtight
hatchway: Invalid parameters from one security level
crashing code at the same security level

devblogs.microsoft.com/oldnewthing/20101208-00

Raymond Chen

In the category of dubious security vulnerability,
I submit the following (paraphrased) report:

I have discovered that if you call the XYZ function
(whose first parameter is supposed to be a
pointer to a
IUnknown),
and instead of passing a valid COM object pointer,
you pass a pointer
to a random hunk of data,
you can trigger an access violation in the
 XYZ function which is
exploitable
by putting specially-crafted data in that memory blob.
An attacker can exploit the
XYZ function for remote
execution and compromise the system,
provided an application uses

the XYZ function and passes
a pointer to untrusted data as the first parameter
instead of a valid
IUnknown pointer.
Although we have not found an application which uses the XYZ
in this

way,
the function neverless contains the potential for exploit,
and the bug should be fixed as
soon as possible.

The person included a sample program which went something
like this (except more

complicated):

// We can control the behavior by tweaking the value

// of the Exploit array.

unsigned char Exploit[] = "\x01\x02\x03...";

void main()

{

 XYZ((IUnknown*)Exploit);

}

Well, yeah, but you’re already on the other side of the
airtight hatchway.
Instead of building

up a complicated blob of memory
with exactly the right format, just write your bad

IUnknown :

https://devblogs.microsoft.com/oldnewthing/20101208-00/?p=12093

2/3

void Pwnz0r()

{

 ... whatever you want ...

}

class Exploit : public IUnknown

{

public:

 STDMETHODIMP QueryInterface(REFIID riid, void **ppv)

 { Pwnz0r(); return E_NOINTERFACE; }

 STDMETHODIMP_(ULONG) AddRef() { Pwnz0r(); return 2; }

 STDMETHODIMP_(ULONG) Release() { Pwnz0r(); return 1; }

};
void main()

{

 XYZ(&Exploit);

}

Wow, this new “exploit” is even portable to other
architectures!

Actually, now that you’re on the other side of the airtight
hatchway, you may as well take

XYZ out of the picture
since it’s just slowing you down:

void main()

{

 Pwnz0r();

}

You’re already running code.
It’s not surprising that you can run code.

There’s nothing subtle going on here.
There is no elevation of privilege because the rogue

activity happens
in user-mode code, based on rogue code provided by an executable
with

trusted code execution privileges,
at the same security level as the original executable.

The people reporting the alleged vulnerability do say that
they haven’t yet found any program

that calls the XYZ
function with untrusted data,
but even if they did,
that would be a data

handling bug in the application itself:
Data crossed a trust boundary without proper

validation.
It’s like saying “There is a security vulnerability in the
 DeleteFile function

because it is possible for
an application to pass an untrusted file name and thereby result
in

an attacker deleting any file of his choosing.”
Even if such a vulnerability existed, the flaw is

in the
application for not validating its input, not in
 DeleteFile for, um, deleting the file it

was told to delete.

The sad thing is that it took the security team five days to
resolve this issue,
because even

though it looks like a slam dunk,
the issue resolution process must be followed, just to be

sure.
Who knows,
maybe there really is a bug in the XYZ function’s
use of the first

parameter that would result in elevation
of privilege.
All supported versions of Windows

need to be examined for the
slim possibility that there’s something behind this confused

vulnerability report.

http://blogs.msdn.com/oldnewthing/archive/2007/08/07/4268706.aspx

3/3

But there isn’t.
It’s just another dubious security vulnerability report.

Exercise:
Apply what you learned to this security vulnerability report.
This is also

paraphrased from an actual security report:

There is a serious denial-of-service vulnerability in the
function XYZ .
This function takes a
pointer to a buffer and a length.
If the function is passed malformed parameters,
it may
encounter an access violation when it tries to read
from an invalid buffer.
Any application which
calls this function with bad parameters
will crash.
Here is a sample program that illustrates the
vulnerability:

int main(int argc, char **argv)

{

// crash inside XYZ attempting to read past end of buffer

XYZ("x", 9999999);

return 0;

}

Credit for discovering this vulnerability
goes to ABC Security Research Company.
Copyright©
20xx ABC Security Research Company.
All Rights Reserved.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

