
1/3

December 1, 2010

How do I delete bytes from the beginning of a file?
devblogs.microsoft.com/oldnewthing/20101201-00

Raymond Chen

It’s easy to append bytes to the end of a file:
Just open it for writing, seek to the end, and start

writing.
It’s also easy to delete bytes from the end of a file:
Seek to the point where you want

the file to be truncated and call
 SetEndOfFile .
But how do you delete bytes from the

beginning of a file?

You can’t, but you sort of can, even though you can’t.

The underlying abstract model for storage of file contents is in the
form of a chunk of bytes,

each indexed by the file offset.
The reason appending bytes and truncating bytes is so easy
is

that doing so doesn’t alter the file offsets of any other
bytes in the file.
If a file has ten bytes

and you append one more,
the offsets of the first ten bytes stay the same.
On the other hand,

deleting bytes from the front or middle of a file
means that all the bytes that came after the

deleted bytes
need to “slide down” to close up the space.
And there is no “slide down” file

system function.

One reason for the absence of a “slide down” function is that
disk storage is typically not

byte-granular.
Storage on disk is done in units known as sectors,
a typical sector size being

512 bytes.
And the storage for a file
is allocated in units of sectors,
which we’ll call storage

chunks for lack of a better term.
For example, a 5000-byte file occupies ten sectors of storage.

The first 512 bytes go in sector 0,
the next 512 bytes go in sector 1,
and so on, until the last

392 bytes go into sector 9,
with the last 120 bytes of sector 9 lying unused.
(There are

exceptions to this general principle, but they
are not important to the discussion,
so there’s

no point bringing them up.)

To append ten bytes to this file, the file system can just
store them after the last byte of the

existing contents.
leaving 110 bytes of unused space instead of 120.
Similarly, to truncate

those ten bytes back off,
the logical file size can be set back to 110,
and the extra ten bytes are

“forgotten.”

In theory, a file system could support truncating an
integral number of storage chunks
off the

front of the file by updating its internal
bookkeeping about file contents without having to

move data physically around the disk.
But in practice, no popular file system implements

https://devblogs.microsoft.com/oldnewthing/20101201-00/?p=12153


2/3

this,
because, as it turns out,
the demand for the feature isn’t high enough to warrant
the

extra complexity. (Remember: Minus 100 points.)

But what’s this “you sort of can” tease?
Answer: Sparse files.

You can use an NTFS sparse file
to decommit the storage for the data at the start of the file,

effectively “deleting” it.
What you’ve really done is set the bytes to logical zeroes,
and if there

are any whole storage chunks in that range, they can
be decommitted and don’t occupy any

physical space on the drive.
(If somebody tries to read from decommitted storage chunks,

they just
get zeroes.)

For example, consider a
1MB
file on a disk that uses 64KB storage chunks.
If you decide to

decommit the first 96KB of the file,
the first storage chunk of the file will be returned to the

drive’s
free space,
and the first 32KB of the second storage chunk will be set to zero.
You’ve

effectively “deleted” the first 96KB of data off the front
of the file, but the file offsets haven’t

changed.
The byte at offset 98,304 is still at offset 98,304 and did not
move to offset zero.

Now, a minor addition to the file system would get you that
magic “deletion from the front of

the file”:
Associated with each file would be a 64-bit value representing
the logical byte zero

of the file.
For example, after you decommitted the first 96KB of the file above,
the logical

byte zero would be 98,304,
and all file offset calculations on the file would be biased by

98,304 to convert from logical offsets to physical offsets.
For example, when you asked to see

byte 10, you would actually get
byte 98314.

So why not just do this?
The minus 100 points rule applies.
There are a lot of details that

need to be worked out.

For example, suppose somebody has opened the file and seeked
to file position 102,400.

Next, you attempt to delete 98,304 bytes from the front of the file.
What happens to that

other file pointer?
One possibility is that the file pointer offset stays at 102,400,
and now it

points to the byte that used to be at offset
200,704.
This can result in quite a bit of confusion,

especially
if that file handle was being written to:
The program writing to the handle issued

two consecutive
write operations, and the results ended up 96KB apart!
You can imagine the

exciting data corruption scenarios that would
result from this.

Okay, well another possibility is that the file pointer offset
moves by the number of bytes you

deleted from the front of the file,
so the file handle that was at 102,400 now shifts to file

position 4096.
That preserves the consecutive read and consecutive write patterns
but it

completely messes up another popular pattern:

off_t oldPos = ftell(fp);

fseek(fp, newPos, SEEK_SET);

... do stuff ...

fseek(fp, oldPos, SEEK_SET); // restore original position


http://blogs.msdn.com/oldnewthing/archive/2009/06/11/9725386.aspx


3/3

If bytes are deleted from the front of the file during the
do stuff portion of the code, the

attempt to restore
the original position will restore the wrong original position
since it didn’t

take the deletion into account.

And this discussion still completely ignores the issue of
file locking.
If a region of the file has

been locked, what happens when
you delete bytes from the front of the file?

If you really like this simulate deleting
from the front of the file by decommitting bytes from

the
front and applying an offset to future file operations
technique, you can do it yourself.

Just keep track of the magic offset and apply it to all your
file operations.
And I suspect the

fact that you can simulate the operation
yourself is a major reason why the feature doesn’t

exist:
Time and effort is better-spent adding features that applications
couldn’t simulate on

their own.

[Raymond is currently away; this message was pre-recorded.]

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

