
1/3

November 22, 2010

Consequences of using variables declared
__declspec(thread)

devblogs.microsoft.com/oldnewthing/20101122-00

Raymond Chen

As a prerequisite, I am going to assume that you understand how TLS works, and in

particular how __declspec(thread) variables work. There’s a quite thorough treatise on

the subject by Ken Johnson (better known as Skywing), who comments quite frequently on

this site. The series starts here and continues for a total of 8 installments, ending here. That

last page also has a table of contents so you can skip over the parts you already know to get to

the parts you don’t know.
Now that you’ve read Ken’s articles…
No, wait I know you didn’t

read them and you’re just skimming past it in the hopes that you will be able to fake your way

through the rest of this article without having read the prerequisites. Well, okay, but don’t be

surprised when I get frustrated if you ask a question that is answered in the prerequisites.

Anyway, as you learned from Part 5 of Ken’s series, the __declspec(thread) model, as

originally envisioned, assumed that all DLLs which use the feature would be present at

process startup, so that all the _tls_index values can be computed and the total sizes of

each module’s TLS data can be calculated before any threads get created. (Well, okay, the

initial thread already got created, but that’s okay; we’ll set up that thread’s TLS before we

execute any application code.)
If you loaded a __declspec(thread) -dependent module

dynamically, bad things happened. For one, TLS data was not set up for any pre-existing

threads, since those threads were initialized before your module got loaded. Windows doesn’t

have a time machine where it can go back in time to when those threads were initialized and

pre-reserve space for the TLS variables your new module needed. Nope, your module is just

out of luck with respect to those pre-existing threads, and if it tries to use

__declspec(thread) variables, it’ll find that its TLS slot never got initialized, and there’s

no data there to access.
Unfortunately, there’s an even worse problem, which Ken quite ably

elaborates on in Part 6: The _tls_index variable inside the module arrived after the train

left the station. All those TLS indices were assigned at process initialization. When it loads

dynamically, the _tls_index variable just sits there, and nobody bothers to initialize it,

leaving it at its default value of zero. (Too bad the compiler didn’t initialize it to

TLS_OUT_OF_INDEXES .) As a result, the module thinks that its TLS variables are at slot zero

in the TLS array, leading to what Ken characterizes as “one of the absolute worst possible

kinds of problems to debug”: Two modules both think they are the rightful owners of the

same data, each with a different concept of what that data is supposed to be. It’d be like if

https://devblogs.microsoft.com/oldnewthing/20101122-00/?p=12233
http://www.nynaeve.net/
http://www.nynaeve.net/?p=180
http://www.nynaeve.net/?p=190
http://www.nynaeve.net/?p=186
http://www.nynaeve.net/?p=187

2/3

there was a bug in HeapAllocate where it returned the same pointer to two separate

callers. Each caller would use the memory, cheerfully believing that the values the code

writes to the memory will be there when it comes back.
What truly frightens me is that

there’s at least one person who considers this horrific data corruption bug a feature.

webcyote calls this bug “sharing all variables between the EXE and the DLL” and complained

that fixing the bug breaks programs that “depend on the old behavior”. That’s like saying “We

found that if we use this exact pattern of memory allocations, we can trick HeapAllocate

into allocating the same memory twice, so we will have our EXE allocate some memory, then

perform the magic sequence of allocations, and then load the DLL, and then the DLL will call

HeapAllocate to allocate some memory, and it will get the same pointer back, and now the

EXE and DLL can share memory.”
Whoa.
Mind you, this crazy “EXE and DLL sharing thread

variables” trick is extremely fragile. You have to intentionally delay loading the DLL until

after process startup. (If you load it as part of an explicit dependency, then you don’t trigger

the bug and the DLL gets its own set of variables as intended.) And then you have to make

sure that the EXE and DLL declare exactly the same variables in exactly the same order and

link the OBJ files in exactly the right sequence, so that all the offsets match. Oh, and you have

to make sure your DLL is loaded only into the EXE with which it is in cahoots. If you load it

into any other EXE, it will start corrupting that EXE’s thread variables. (Or, if the EXE

doesn’t use thread variables, it’ll corrupt some other random DLL’s thread variables.)
If the

feature had been intended to be used in this insane way, they would have been called “shared

variables” instead of “thread variables”. No wait, they would have been called “thread

variables that sometimes end up shared under conditions outside your DLL’s control.”
I

wonder if Webcyote also drives a manual transmission and just slams the gear stick into

position without using the clutch. Yes, you can do it if you are really careful and get

everything to align just right, but if you mess up, your transmission explodes and spews parts

all over the road.
Don’t abuse a bug in the loader. If you want shared variables, then create

shared variables. Don’t create per-thread variables and then intentionally trigger a bug that

causes them to overlay each other by mistake. That’s such a crazy idea that it probably never

occurred to anyone that somebody would actually build a system that relies on it!

Exercise: A customer ran into a problem with the “inadvertently sharing variables between

the EXE and the DLL” bug. Here is the message from the customer liaison:

My customer has a DLL that uses static thread local storage (__declspec(thread)), and he
wants to use this DLL from his C# program. Unfortunately, he is running into the limitation
when running on Windows XP that DLLs which use static thread local storage crash when they
try to access their thread variables. The customer cannot modify the DLL. What do you
recommend?

Update: Commenter shf gives the most complete answer.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/pages/407234.aspx#2416548
http://support.microsoft.com/kb/118816
http://blogs.msdn.com/b/oldnewthing/archive/2010/11/22/10094489.aspx#10095505
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

