
1/4

November 10, 2010

Your debugging code can be a security vulnerability:
Loading optional debugging DLLs without a full path

devblogs.microsoft.com/oldnewthing/20101110-00

Raymond Chen

Remember, the bad guys don’t care that your feature exists
just for debugging purposes.
If

it’s there, they will attack it.

Consider the following code:

DOCLOADINGPROC g_pfnOnDocLoading;

void LoadDebuggingHooks()

{

HMODULE hmodDebug = LoadLibrary(TEXT("DebugHooks.dll"));

if (!hmodDebug) return;

g_pfnOnDocLoading = (DOCLOADINGPROC)

 GetProcAddress(hmodDebug, "OnDocLoading");

...

}

HRESULT LoadDocument(...)

{

...

if (g_pfnOnDocLoading) {

 // let the debugging hook replace the stream

 g_pfnOnDocLoading(&pstmDoc);

}
...

}

When you need to debug the program, you can install the
 DebugHooks.dll DLL into the

application directory.
The code above looks for that DLL and if present, gets
some function

pointers from it.
For illustrative purposes, I’ve included one debugging hook.
The idea of this

example
(and it’s just an example,
so let’s not argue about whether it’s a good example)
is

that when we’re about to load a document,
we call the OnDocLoading function,
telling it

about the document that was just loaded.
The OnDocLoading function
wraps the IStream

inside another object
so that the contents of the document can be logged
byte-by-byte as it is

loaded, in
an attempt to narrow down exactly where document loading fails.
Or it can be used

for testing purposes to inject I/O errors
into the document loading path to confirm that the

program
behaves properly under those conditions.
Use your imagination.

https://devblogs.microsoft.com/oldnewthing/20101110-00/?p=12313
http://blogs.msdn.com/oldnewthing/archive/2005/12/12/502719.aspx

2/4

But this debugging code is also a security vulnerability.

Recall that the library search path searches directories
in the following order:

1. The directory containing the application EXE.

2. The system32 directory.

3. The system directory.

4. The Windows directory.

5. The current directory.

6. The PATH.

When debugging your program, you install DebugHooks.dll
into the application directory

so that it is found in step 1.
But when your program isn’t being debugged,
the search in step 1

fails,
and the search continues in the other directories.
The DLL is not found in steps

2 through 4,
and then we reach step 5: The current directory.

And now you’re pwned.

Your application typically does not have direct control over
the current directory.
The user

can run your program from any directory,
and that directory ends up as your current

directory.
And then your LoadLibrary call searches
the current directory,
and if a bad guy

put a rogue DLL in the current directory,
your program just becames the victim of code

injection.

This is made particularly dangerous when your application
is associated with a file type,

because the user can run your application just by
double-clicking an associated document.

When you double-click a document, Explorer sets the
current directory of the document

handler application
to the directory that contains the document being opened.
This is

necessary for applications which look around
in the current directory for supporting files.
For

example,
consider
a hypothetical application LitWare Writer
associated with *.LIT

files.
A LitWare Writer document
 ABC.LIT file is really just the representative
for a family

of files,
 ABC.LIT (the main document),
 ABC.LTC (the document index and table of

contents),
 ABC.LDC (the custom spell check dictionary for the document),
 ABC.LLT (the

custom document layout template),
and so on.
When you open the document

C:\PROPOSAL\ABC.LIT ,
LitWare Writer looks for the other parts of your document
in the

current directory,
rather than in C:\PROPOSAL .
To help these applications find their files,

Explorer specifies to the CreateProcess function
that it should set the initial current

directory of
LitWare Writer to C:\PROPOSAL .

Now, you might argue that programs like LitWare Writer
(which look for the ancillary files of

a multi-file document
in the current directory instead of the directory containing
the primary

file of the multi-file document) are
poorly-written, and I would agree with you,
but Windows

needs to work even with poorly-written programs.
(Pre-emptive snarky comment:

3/4

Windows is itself
a poorly-written program.)
There are a lot of poorly-written programs out

there,
some of them industry leaders in their market (see above
pre-emptive snarky

comment)
and if Windows stopped accommodating them, people would
say it was the fault

of Windows and not the programs.

I can even see in my mind’s eye the bug report that resulted
in this behavior being added to

the MS-DOS Executive:

“This program has worked just fine in MS-DOS,
but in Windows, it doesn’t work.
Stupid

Windows.”

Customers tend not to be happy with the reply,
“Actually, that program has simply been

lucky for the past X years.
The authors of the program never considered the case where
the

document being opened is not in the current directory.
And it got away with it, because the

way you opened the document
was to use the chdir command to move to the directory
that

contained your document,
and then to type
 LWW ABC.LIT .
If you had ever done
 LWW

C:\PROPOSAL\ABC.LIT you would have run into the
same problem.
The behavior is by

design.”

In response to “The behavior is by design” is usually
“Well, a design that prevents me from

getting my work done is
a crappy design.”
or a much terser “No it’s not, it’s a bug.”
(Don’t

believe me? Just read Slashdot.)

So to make these programs work in spite of themselves,
the MS-DOS Executive sets the

current directory of the program
being launched to the directory containing the document

itself.
This was not an unreasonable decision because it gets the program
working again, and

it’s not like the program cared about the
current directory it inherited from the MS-DOS

Executive,
since it had no control over that either!

But it means that if you launched a program by double-clicking
an associated document, then

unless that program takes steps to
change its current directory, it will have the document’s

containing
folder as its current directory, which prevents you from deleting
that directory.

Bonus chatter:
I wrote this series of entries nearly two years ago,
and even then,
I didn’t

consider this to be anything particularly groundbreaking,
but apparently some people

rediscovered it a few months ago
and are falling all over themselves to claim credit
for having

found it first.
It’s like a new generations of teenagers who think they invented sex.
For the

record, here is some
official guidance.
(And just to be clear,
that’s official guidance on the

current directory attack,
not
official guidance on sex.)

History chatter:
Why is the current directory even considered at all?
The answer goes back

to CP/M.
In CP/M, there was no PATH.
Everything executed from the current directory.
The

rest is a chain of backward compatibility.

http://support.microsoft.com/kb/2389418
http://blogs.msdn.com/b/oldnewthing/archive/2006/10/26/875991.aspx

4/4

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

