Debugging walkthrough: Diagnosing a __purecall failure

=. devblogs.microsoft.com/oldnewthing/20101029-00

October 29, 2010

4
Raymond Chen

Prerequisite: Understanding what _purecall means.

I was asked to help diagnose an issue in which a program managed to stumble into the
__purecall function.

XYZ!_purecall:
00214509 al00000000 mov eax, dword ptr ds:[00000000h]

The stack at the point of failure looked like this:

XYZ!_purecall

XYZ!CViewFrame: :SetFrame+0x14d
XYZ!CViewFrame: :SetPresentation+0x355
XYZ!CViewFrame: :BeginView+0x1fe

The line at XYz!CViewFrame::SetFrame that called the mystic ~ purecall was a simple
AddRef :

pSomething->AddRef(); // crashes in _ purecall

From what we know of _ purecall , this means that somebody called into a virtual method
on a derived class after the derived class’s destructor has run. Okay, well, let’s see if we can
find the object in question. Since the method being called is a COM method, the stdcall
calling convention applies, which means that the this pointer is on the stack.

0:023> dd esp+4 11
0529f76c 0©06a88d58

Using our knowledge of the layout of a COM object, we can navigate through memory to find
the vtable.

1/3

https://devblogs.microsoft.com/oldnewthing/20101029-00/?p=12413
http://blogs.msdn.com/oldnewthing/archive/2004/04/28/122037.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/02/05/68017.aspx

0:023> dps 06a88d58

06a88d58 009b2eac XYZ!CRegistrationSink:: vftable'
06a88d5c 06b20058

06a88d60 00000002

06a88d64 00998930 XYZ!CObjectWithBrush:: vftable'
06a88d68 00OOOCOO

06a88d6c 009c9c80 XYZ!CBrowseSite:: vftable'
06a88d70 009c9c70 XYZ!CBrowseSite:: vftable'
06a88d74 00000000

0:023> dps 009b2eac

009b2eac 00al14509 XYZ!_purecall // virtual QueryInterface() = 0
009b2ebd® 00al14509 XYZ!_purecall // virtual AddRef() = 0
009b2eb4 00a14509 XYZ!_purecall // virtual Release() = 0
009b2eb8 009cbled4 XYZ!CRegistrationSink::Register

009b2ebc 009b3d2d XYZ!CRegistrationSink::Unregister

We see that the object has been destructed down to the CRegistrationSink base class, and
the attempt to increment its reference count has led us into the abyss of _ purecall .

But what was this object before it descended into madness?

Well, we know that the object was something derived from CRegistrationSink . And the
other values in memory tell us that the object most likely also derived from

CObjectWithBrush and CBrowseSite .Just for fun, here’s the CObjectwWithBrush
vtable, to confirm that we destructed down to that point:

00998930 00al4509 XYZ!_purecall // virtual QueryInterface() = 0
00998934 00al14509 XYZ!_purecall // virtual AddRef() = 0

00998938 00al4509 XYZ!_purecall // virtual Release() = 0

0099893c 0099880d XYZ!CObjectWithBrush: :SetBrush

00998940 00a319ee XYZ!CObjectWithBrush: :GetBrush

00998944 00al3fd9 XYZ!CObjectWithBrush:: scalar deleting destructor'

Ooh, it looks like CObjectwithBrush has a virtual destructor. Probably to destroy the
brush.

A check of the source code tells us that nobody derives from CBrowseSite , so that is almost
certainly the original object type.

As a cross-check, we check whether what we have matches the memory layout of a
CBrowseSite :

2/3

0:023> dt XYZ!CBrowseSite 06a88d58
+0x000 _ VFN_table : 0Ox009b2eac

+0x004 m_prgreg : Ox06a88d58 Registration
+0Xx008 m_creg 2

+0X00c __ VFN_table : 0x00998930

+0x010 m_hbr : (null)

+0x014 _ VFN_table : 0Ox009c9c806
+0x018 _ VFN_table : 0x009c9c70
+0x01c m_cRef 0

Looks not unreasonable. (Well, aside from the fact that we have a bug...) The object has most
likely begun its destruction because its reference count (_cRef) went to zero.

At this point, there was enough information to ask the developers responsible for
CviewFrame and CBrowseSite to work out howthe CviewFrame ended up running
around with a pointer to an object that has already been destructed.

Raymond Chen

Follow

3/3

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

