
1/3

October 29, 2010

Debugging walkthrough: Diagnosing a __purecall failure
devblogs.microsoft.com/oldnewthing/20101029-00

Raymond Chen

Prerequisite:
Understanding what __purecall means.

I was asked to help diagnose an issue in which a program managed to stumble
into the

__purecall  function.

XYZ!_purecall:

00a14509 a100000000      mov     eax,dword ptr ds:[00000000h] 
ds:0023:00000000=????????


The stack at the point of failure looked like this:

XYZ!_purecall

XYZ!CViewFrame::SetFrame+0x14d

XYZ!CViewFrame::SetPresentation+0x355

XYZ!CViewFrame::BeginView+0x1fe


The line at XYZ!CViewFrame::SetFrame  that
called the mystic __purecall  was a simple

AddRef :

 pSomething->AddRef(); // crashes in __purecall


From what we know of __purecall ,
this means that somebody called into a virtual method

on a derived
class after the derived class’s destructor has run.
Okay, well, let’s see if we can

find the object in question.
Since the method being called is a COM method,
the __stdcall

calling convention applies,
which means that the this  pointer is on the stack.

0:023> dd esp+4 l1

0529f76c  06a88d58


Using our knowledge of
the layout of a COM object,
we can navigate through memory to find

the vtable.

https://devblogs.microsoft.com/oldnewthing/20101029-00/?p=12413
http://blogs.msdn.com/oldnewthing/archive/2004/04/28/122037.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/02/05/68017.aspx


2/3

0:023> dps 06a88d58

06a88d58  009b2eac XYZ!CRegistrationSink::`vftable'

06a88d5c  06b20058

06a88d60  00000002

06a88d64  00998930 XYZ!CObjectWithBrush::`vftable'

06a88d68  00000000

06a88d6c  009c9c80 XYZ!CBrowseSite::`vftable'

06a88d70  009c9c70 XYZ!CBrowseSite::`vftable'

06a88d74  00000000

....

0:023> dps 009b2eac

009b2eac  00a14509 XYZ!_purecall // virtual QueryInterface() = 0

009b2eb0  00a14509 XYZ!_purecall // virtual AddRef() = 0

009b2eb4  00a14509 XYZ!_purecall // virtual Release() = 0

009b2eb8  009cb1e4 XYZ!CRegistrationSink::Register

009b2ebc  009b3d2d XYZ!CRegistrationSink::Unregister


We see that the object has been destructed down to the
 CRegistrationSink  base class,
and

the attempt to increment its reference count has led us
into the abyss of __purecall .

But what was this object before it descended into madness?

Well, we know that the object was something derived from
 CRegistrationSink .
And the

other values in memory tell us that the object most
likely also derived from

CObjectWithBrush 
and CBrowseSite .
Just for fun, here’s the CObjectWithBrush

vtable,
to confirm that we destructed down to that point:

00998930  00a14509 XYZ!_purecall // virtual QueryInterface() = 0

00998934  00a14509 XYZ!_purecall // virtual AddRef() = 0

00998938  00a14509 XYZ!_purecall // virtual Release() = 0

0099893c  0099880d XYZ!CObjectWithBrush::SetBrush

00998940  00a319ee XYZ!CObjectWithBrush::GetBrush

00998944  00a13fd9 XYZ!CObjectWithBrush::`scalar deleting destructor'


Ooh, it looks like CObjectWithBrush  has a
virtual destructor.
Probably to destroy the

brush.

A check of the source code tells us that nobody derives from
 CBrowseSite , so that is almost

certainly the
original object type.

As a cross-check, we check whether what we have matches
the memory layout of a

CBrowseSite :



3/3

0:023> dt XYZ!CBrowseSite 06a88d58

  +0x000 __VFN_table : 0x009b2eac

  +0x004 m_prgreg         : 0x06a88d58 Registration

  +0x008 m_creg           : 2

  +0x00c __VFN_table : 0x00998930

  +0x010 m_hbr            : (null)

  +0x014 __VFN_table : 0x009c9c80

  +0x018 __VFN_table : 0x009c9c70

  +0x01c m_cRef           : 0


Looks not unreasonable.
(Well, aside from the fact that we have a bug…)
The object has most

likely begun its destruction because its
reference count ( _cRef ) went to zero.

At this point, there was enough information to ask the developers
responsible for

CViewFrame  and CBrowseSite  to work out
how the CViewFrame  ended up running

around with a pointer
to an object that has already been destructed.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

