
1/2

October 25, 2010

When you call a function, your code doesn't resume
execution until that function returns

devblogs.microsoft.com/oldnewthing/20101025-00

Raymond Chen

Consider this code fragment:

void foo()

{

 while (true) {

 bar();

 baz();

 }

}

When foo calls bar() ,
and bar has not yet returned, does foo
continue executing?

Does baz get called before bar returns?

No, it does not.

The basic structure of the C/C++ language imposes sequential execution.
Control does not

return to the foo function
until bar returns control,
either by reaching the end of the

function
or by an explicit return .

Commenter Norman Diamond
asks a bunch of questions, but
they’re all mooted by the first:

I can’t find any of the answers in MSDN,
and even an answer to one doesn’t make answers to
others obvious.

Unless failures occur,
the DialogBox function doesn’t return
until the new dialog’s DialogProc
calls EndDialog.
It starts its own message loop.
Dkring this time the hwndParent (i.e. owner not
parent) window is disabled.
However, disabling doesn’t prevent delivery of some kinds of
messages
to the parent window’s WindowProc or DialogProc,
and doesn’t prevent delivery of
any messages
to the application’s main message loop, right?
So aren’t there two or more
message loops running in parallel?

https://devblogs.microsoft.com/oldnewthing/20101025-00/?p=12463
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#1972314

2/2

As long as the function DialogBox has not yet returned,
control does not return to the

application’s main message loop,
since it is the one which called DialogBox (most likely

indirectly).

MSDN doesn’t explain this because
it is a fundamental property of the C and C++ languages

and is not
peculiar to Win32.

Disabling a window does not prevent it from receiving messages
in general; it only disables

mouse and keyboard input.
This is called out in the opening sentence of the EnableWindow

function documentation:

The EnableWindow function enables or disables mouse
and keyboard input to the specified
window or control.

Messages unrelated to mouse and keyboard input are delivered normally.
And they aren’t

dispatched by the application’s main message loop
because, as we saw above, the main

message loop isn’t executing!

I would recommend reviewing a book that covers
the basics of Win32 GUI programming,

since there appear to be some
fundamental misunderstandings.
Since I try to target an

advanced audience, I generally assume
that everybody understands the basics and is ready to

move on
to the intermediate and advanced topics.
If you have trouble with the basics, you

should work on that part first.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

