
1/2

October 21, 2010

The evolution of the ICO file format, part 3: Alpha-
blended images

devblogs.microsoft.com/oldnewthing/20101021-00

Raymond Chen

Windows XP introduced the ability to provide icon images which contain an 8-bit alpha

channel. Up until this point, you had only a 1-bit alpha channel, represented by a mask.
The

representation of an alpha-blended image in your ICO file is pretty straightforward. Recall

that the old ICO format supports 0RGB 32bpp bitmaps. To use an alpha-blended image, just

drop in a ARGB 32bpp bitmap instead. When the window manager sees a 32bpp bitmap, it

looks at the alpha channel. If it’s all zeroes, then it assumes that the image is in 0RGB format;

otherwise it assumes it is in ARGB format. Everything else remains the same as for the non-

alpha version.
Note carefully that everything else remains the same. In particular, you are

still required to provide a mask. I’ve seen some people be a bit lazy about providing a

meaningful mask and just pass in all-zeroes. And everything seems to work just fine, until

you hit a case where it doesn’t work. (Read on.)
There are basically three ways of drawing an

alpha-blended icon image.

1. DrawIcon(DI_NORMAL) : This is by far the most common way icons are drawn. In the

alpha-blended case, this is done by blending the image with the destination according

to the alpha channel.

2. DrawIcon(DI_IMAGE) : This draws the image portion of the icon image, completely

overwriting the destination.

3. DrawIcon(DI_MASK) : This draws only the mask portion of the icon image, completely

overwriting the destination.

The DI_IMAGE  and DI_MASK  flags let an application draw just one of the two images

contained in an icon image. Applications do this if they want finer control over the icon-

drawing process. For example, they might ask for the mask so they can build a shadow effect

under the icon. The mask tells them which parts of the icon are opaque and therefore should

cast a shadow.
If you understand this, then you can see how people who set their mask image

to all-zeroes managed to get away with it most of the time. Since most programs just use

DI_NORMAL  to draw icons, the incorrect mask is never used, so the error never shows up. It’s

https://devblogs.microsoft.com/oldnewthing/20101021-00/?p=12483


2/2

only when the icon is used by a program that wants to do fancy icon effects and asks for

DI_MASK  (or calls GetIconInfo  and looks at the hbmMask ) that the incorrect mask

results in an ugly icon.

The ironic thing is that the people who incorrectly set the mask to all-zeroes are probably the

same people who will then turn around and say, “When I try to use alpha-blended icons, the

result is hideously ugly under conditions X and Y. Those Microsoft programmers are such

idiots. More proof that Windows is a buggy pile of manure.” What they don’t realize is that

the hideous ugliness was caused by their own error.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

