
1/3

October 14, 2010

The memcmp function reports the result of the
comparison at the point of the first difference, but it can
still read past that point

devblogs.microsoft.com/oldnewthing/20101014-00

Raymond Chen

This story originally involved a more complex data structure,
but that would have required

too much explaining (with relatively
little benefit since the data structure was not related to

the
moral of the story),
so I’m going to retell it with
double null-terminated strings
as the

data structure instead.

Consider the following code to compare two double-null-terminated
strings for equality:

size_t SizeOfDoubleNullTerminatedString(const char *s)

{

 const char *start = s;

 for (; *s; s += strlen(s) + 1) { }

 return s - start + 1;

}

BOOL AreDoubleNullTerminatedStringsEqual(

 const char *s, const char *t)

{

size_t slen = SizeOfDoubleNullTerminatedString(s);

size_t tlen = SizeOfDoubleNullTerminatedString(t);

return slen == tlen && memcmp(s, t, slen) == 0;

}

“Aha, this code is inefficient.
Since the memcmp function stops comparing
as soon as it finds

a difference, I can skip the call
to
 SizeOfDoubleNullTerminatedString(t)
and simply

write

BOOL AreDoubleNullTerminatedStringsEqual(

 const char *s, const char *t)

{

return memcmp(s, t, SizeOfDoubleNullTerminatedString(s)) == 0;

}

https://devblogs.microsoft.com/oldnewthing/20101014-00/?p=12533
http://blogs.msdn.com/oldnewthing/archive/2009/10/08/9904646.aspx

2/3

because we can never read past the end of t :
If the strings are equal, then tlen
will be

equal to slen anyway,
so the buffer size is correct.
And if the strings are different,
the

difference will be found at or before the end of t ,
since it is not possible for a double-null-

terminated string to be
a prefix of another double-null-terminated string.
In both cases, we

never read past the end of t .”

This analysis is based on a flawed assumption,
namely, that memcmp compares byte-by-byte

and does not look at bytes beyond the first point of difference.
The memcmp function makes

no such guarantee.
It is permitted to read all the bytes from both buffers
before reporting the

result of the comparison.

In fact, most implementations of memcmp do
read past the point of first difference.
Your

typical library will try to compare the two buffers
in register-sized chunks rather than byte-

by-byte.
(This is particularly convenient on x86 thanks to the
block comparison instruction

rep cmpsd which
compares two memory blocks in DWORD -sized chunks,
and x64 doubles

your fun with rep cmpsq .)
Once it finds two chunks which differ,
it then studies the bytes

within the chunks to determine what
the return value should be.

(Indeed,
people with free time on their hands or simply enjoy a challenge
will
try to outdo the

runtime library
with
fancy-pants memcmp algorithms which compare
the buffers in larger-

than-normal chunks by doing things
like comparing via SIMD registers.)

To illustrate, consider an implementation of memcmp
which uses 4-byte chunks.
Typically,

memory comparison functions do some preliminary work
to get the buffers aligned, but let’s

ignore
that part since it isn’t interesting.
The inner loop goes like this:

while (length >= 4)

{

int32 schunk = *(int32*)s;

int32 tchunk = *(int32*)t;

if (schunk != tchunk) {

 -- difference found - calculate and return result

}
length -= 4;

s += 4;

t += 4;

}

Let’s compare the strings s = "a\0b\0\0" and t = "a\0\0".
The size of the double-null-

terminated string s is 4,
so the memory comparison goes like this:
First we read four bytes

from s into schunk ,
resulting in (on a little-endian machine) 0x00620061 .
Next, we read

four bytes from t into tchunk ,
resulting in 0x??000061 .
Oops, we read one byte past the

end of the buffer.

http://justin.harmonize.fm/index.php/2009/05/exploring-memcmp/

3/3

If t happened to sit right at the end of a page, and
the next page was uncommitted memory,

then you take an access violation
while trying to read tchunk .
Your optimization turned

into a crash.

Remember, when you say that a buffer is a particular size,
the
basic ground rules of

programming
say that it really has to be that size.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2006/03/20/555511.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

