
1/3

October 1, 2010

Non-psychic debugging: Why you're leaking timers
devblogs.microsoft.com/oldnewthing/20101001-00

Raymond Chen

I was not involved in this debugging puzzle,
but I was informed of its conclusions,
and I think

it illustrates both the process of debugging
as well as uncovering a common type of defect.

I’ve written it up in the style of a post-mortem.

https://devblogs.microsoft.com/oldnewthing/20101001-00/?p=12663

2/3

A user reported that if they press and hold the F2 key
for about a minute,
our program
eventually stops working.
According to Task Manager, our User object count has reached
the
10,000 object limit,
and closer inspection revealed that we had created over 9000 timer
objects.

We ran the debugger and
set breakpoints on SetTimer and KillTimer
to print to the
debugger each timer ID as it was created and destroyed.
Visual inspection of the output revealed
that all but one of the IDs
being created was matched with an appropriate destruction.
We re-ran
the scenario with a conditional breakpoint on
 SetTimer set to fire when that bad ID was set.
It didn’t take long for that breakpoint to fire,
and we discovered that we were setting the timer
against a
 NULL window handle.

A different developer on the team arrived at the same
conclusion by a different route.
Instead of
watching timers being created and destroyed,
the developer dumped each timer message before
it was dispatched
and observed that most of the
entries were associated with NULL window
handles.

Two independent analyses came to the same conclusion:
We were creating a bunch of thread
timers and not destroying them.

A closer inspection of the code revealed that
thread timers were not intended in the first place.
Each time the user presses F2,
the code calls SetTimer and passes a window handle
it
believes to be non- NULL .
The timer is destroyed
in the window procedure’s WM_TIMER
handler, but
since the timer was registered against the wrong window handle,
the WM_TIMER
is never received by the intended
target’s window procedure,
and the timer is never destroyed.

The window handle is NULL due to a defect in the code
which handles the F2 keypress:
The
handle that the code wanted to use
for the timer had not yet been set.
(It was set by a later step
of F2 processing.)
The timer was being set by a helper function which is called both
before and
after the code that sets the handle, but it obviously was
written on the assumption that it would
only be called after.

To reduce the likelihood of this type of defect being introduced
in the future,
we’re going to
introduce a wrapper function around SetTimer
which asserts that the window handle is
non- NULL before
calling SetTimer .
(In the rare case that we actually want a thread timer,
we’ll have a second wrapper function called
 SetThreadTimer .)

I haven’t seen the wrapper function, but I suspect it goes
something like this:

http://blogs.msdn.com/oldnewthing/archive/2007/07/18/3926581.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/10/16/9001218.aspx

3/3

inline UINT_PTR SetWindowTimer(

 __in HWND hWnd, // NB - not optional

 __in UINT_PTR nIDEvent,

 __in UINT uElapse,

 __in_opt TIMERPROC lpTimerFunc)

{

 assert(hWnd != NULL);

 return SetTimer(hWnd, nIDEvent, uElapse, lpTimerFunc);

}

inline UINT_PTR SetThreadTimer(

 __in UINT uElapse,

 __in_opt TIMERPROC lpTimerFunc)

{

 return SetTimer(NULL, 0, uElapse, lpTimerFunc);

}

__declspec(deprecated)

WINUSERAPI

UINT_PTR

WINAPI

SetTimer(

 __in_opt HWND hWnd,

 __in UINT_PTR nIDEvent,

 __in UINT uElapse,

 __in_opt TIMERPROC lpTimerFunc);

There are few interesting things here.

First, observe that the annotation for the first parameter to
 SetWindowTimer is __in

rather than
 __in_opt . This indicates that the parameter
cannot be NULL .
Code analysis

tools can use this information to attempt to identify
potential defects.

Second, observe that the SetThreadTimer wrapper
function omits the first two parameters.

For thread timers, the hWnd passed to
 SetTimer is always NULL and the
 nIDEvent is

ignored.

Third, after the two wrapper functions, we redeclare
the SetTimer , but mark it as

deprecated
so the compiler will complain if somebody tries to call the
original function

instead of one of the two wrappers.
(The __declspec(deprecated) extended attribute
is a

nonstandard Microsoft extension.)

Exercise:
Why did I use __declspec(deprecated) instead of
 #pragma

deprecated(SetTimer) ?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

