
1/2

September 27, 2010

Why not just require each application to declare what
version of Windows it is compatible with?

devblogs.microsoft.com/oldnewthing/20100927-00

Raymond Chen

Via the Suggestion Box, Arno Shoedl asked, “could not a lot of compatibility problems be

solved by simply declaring (via manifest?) the earliest and latest version of Windows a

program has been tested to run on?”
Actually, programs already declare that, sort of. Each

module has a subsystem field in the header that specifies the earliest version of Windows the

program will run on. There isn’t a corresponding way to declare the maximum version of

Windows you want to run on, however, so the manifesty thing could be done there. (There is

a new manifesty way of saying what version of Windows you would like to see.)
But let’s look

at the bigger picture: In order to benefit from this proposed feature, an application author

would have to do some extra work to declare in a manifest what versions of Windows they

prefer to run on. That’s already a bunch of work that gets in the way (because to an

application author, any amount of work greater than zero that doesn’t correspond to business

logic is “a bunch of work that gets in the way”). Which means most people won’t bother doing

it.
So you’re back to where you started.
Even if we could somehow convince application

authors to get off their butts and do things that do not benefit them personally (like all the

other programming taxes), that won’t help all the programs out there that don’t have any

such manifest.
“Okay, well, let’s just say that any program that doesn’t have a compatibility

manifest is treated as compatible with a maximum of Windows 7.”
Great. Where do you put

the manifest for a batch file?
There’s a bigger problem, which is applications which are built

out of DLLs. What if an application is manifested as “I have been tested only on

Windows XP” and it loads a DLL that is manifested as “I have been tested only on

Windows Vista”? Now there is no version of Windows that both the application and the DLL

have been tested with together. What does GetVersion return? Even if your program

doesn’t have a plug-in model, you’re not out of the woods. If you call ShellExecute or

GetOpenFileName , the shell namespace will get loaded, and with it all sorts of shell

extensions who may be manifested all sorts of different ways.
And then you have the cross-

process communication problem. Suppose you drag an object out of a program marked as I

was tested with Windows 7 and drag it over a window that belongs to a program marked as I

was tested only with Windows XP. How do you communicate this information back to the

data source so it knows “Be very careful. You’re from the future. Don’t tell that process about

any data that didn’t exist in Windows XP. You might disrupt the time stream.”
Another

https://devblogs.microsoft.com/oldnewthing/20100927-00/?p=12733
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#1768266
http://msdn.microsoft.com/en-us/library/dd371711.aspx

2/2

problem, of course, is that just because a program says that it has been tested on

Windows XP doesn’t mean that it’s actually going to run on Windows XP. There are many

categories of bugs that appear only on configurations that were unusual on Windows XP but

more common on later versions of Windows. (For example, “My user profile isn’t in a

directory called Documents and Settings .”) Even if a program says that it was tested on

Windows XP, that doesn’t mean that running the old Windows XP operating system code is

enough to keep it happy.
And of course there’s the question of whether you want this in the

first place. If we had introduced this model back in Windows 2000, by the time you have

reached Windows 7, you could have a screen with applications that have three different visual

styles: A program manifested as being tested only on Windows 2000 would have the

Windows 2000 look, another program would have the Windows XP look, and a third

program would have the another program would have the Windows 7 look. Even better:

When Windows 7 came out, no applications would have the Windows 7 look since the

manifest couldn’t declare that it was compatible with something that didn’t exist.
Looking at

it another way, the manifest is basically a way for an application to say “Please run me in

compatibility mode.” But as we saw before, application compatibility layers are there for the

customer, not for the program.

Bonus reading: Manifesting for Compatibility on Windows 7.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2010/03/11/9976571.aspx
http://blogs.msdn.com/cjacks/archive/2009/03/27/manifesting-for-compatibility-on-windows-7.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

