
1/3

September 10, 2010

Hey there token, long time no see! (Did you do something
with your hair?)

devblogs.microsoft.com/oldnewthing/20100910-00

Raymond Chen

Consider a system where you have a lot of secured objects, and suppose further that checking

whether a user has access to an object is a slow operation. This is not as rare as you might

think: Even though a single access check against a security descriptor with a small number of

ACEs might be fast, you can have objects with complicated security descriptors or (more

likely) users who belong to hundreds or thousands of security groups. Since checking

whether a security descriptor grants access to a token is potentially¹ O(nm) in the number of

ACEs in the security descriptor and the number of groups the user belongs to (since each

ACE needs to be checked to see if it matches each group), even a check against a small

security descriptor can multiply out to a slow operation when the user belongs to thousands

of groups.
Suppose your profiling shows that you spend a lot of time checking tokens against

security descriptors. How can you create a cache of access/no-access results so you can short-

circuit the expensive security check when a user requests access to an object? (And obviously,

you can’t have any false positives or false negatives. Security is at stake here!)
First, let’s look

at things that don’t solve the problem: One option is to query the SID from the token and

cache the access/no-access result with the SID. This option is flawed because between the

two checks, the user’s group membership may have changed. For example, suppose object X

is accessible to members of Group G. Bob starts out as a member of Group G, asks you for

access, and you grant it and cache the fact that Bob has access to object X. Later that day,

Bob’s membership in Group G is revoked, and when Bob logs on the next day, his token won’t

include Group G. If you had merely cached Bob’s SID, you would have seen the entry in the

cache and said, “Welcome back, Bob. Have fun with object X!” Bob then rubs his hands

together and mutters Excellent! and starts making unauthorized changes to object X.
Now,

Bob’s membership in Group G might have been revoked at Bob’s request. Reducing one’s

privileges is a common safety measure. For example, Bob might remove his membership in

the Administrators group so he won’t accidentally delete an important file. Low Rights

Internet Explorer intentionally removes a slew of privileges from its token so that the scope

of damage of an attack from a malicious site is limited.
Okay, so how can we recognize that

the Bob that comes back has different group membership from the Bob that visited us the

first time? You can do this with the help of the TOKEN_STATISTICS structure. This structure

contains a number of locally-unique values which can be used to recognize and correlate

https://devblogs.microsoft.com/oldnewthing/20100910-00/?p=12903
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://blogs.msdn.com/ie/archive/2005/06/09/427410.aspx

2/3

tokens. A locally-unique value is a value that is unique on the local machine until the

operating system is shut down or restarted. You request the statistics for a token by calling

GetTokenInformation function, passing TokenStatistics as the information class.
The

AuthenticationId is known in some places as the LogonId because it is assigned to the

logon session that the access token represents. There can be many tokens representing a

single logon session, so that won’t work for our purposes.
The TokenId is a little closer. It is

a locally-unique value assigned to a token when it is created. This value remains attached to

that token until it is destroyed. This is closer, but still not perfect, because Bob can enable or

disable privileges, and that doesn’t change the token, but it sure changes the result of a

security check!
The ModifiedId is a value which is updated each time a token is modified.

Therefore, when you want to cache that This particular token has access to this security

descriptor, you should use the ModifiedId as the key. (Remember, locally-unique values

are good only until the system shuts down or restarts, so don’t cache them across reboots!)

Now, a cache with a bad policy is another name for a memory leak, so be careful how much

and how long you cache the results of previous security checks. You don’t want somebody

who goes into a loop alternatively calling AdjustTokenPrivileges and your function to

cause your cache to consume all the memory in the system. (Each call to

AdjustTokenPrivileges updates the ModifiedId , which causes your code to create a

new cache entry.)
Now, you might decide to use as your lookup key the ModifiedId and

some unique identifier associated with the object. This means that if Bob accesses 500

objects, you have 500 cache entries saying Bob has access to object 1 through Bob has access

to object 500. (And you have to remembering to purge all cached results for an object if the

object’s security descriptor changes.)
It turns out you can do better.
Even though you may

have millions of objects, you probably don’t have millions of security descriptors. For

example, consider your hard drive: Most of the files on that hard drive use one of just a

handful of security descriptors. In particular, it’s nearly always the case that all files in a

directory share the same security descriptor, because they start out with the security

descriptor inherited from the directory, and most people don’t bother customizing it. Even if

your hard drive is on a server with hundreds of users connecting and creating files, you will

probably only have a few thousand unique security descriptors.
A better cache key would be

the ModifiedId of the token being checked and the self-relative security descriptor that the

token was checked against. If Bob accesses 500 objects, there will probably be only around

five unique security descriptors. That’s only five cache entries for Bob. It also saves you the

trouble of remember to purge the cache when an object’s security descriptor changes, since a

new security descriptor changes one of the lookup keys, so it gets a new cache entry. Since

security descriptors tend to be shared among many objects, you get two bonus benefits: The

old security descriptor is probably still being used by some other object, so you may as well

leave it in the cache and let it age out naturally. And second, there’s a good chance the new

security descriptor is already in your cache because it’s probably already being used by some

other object.
¹I use the word potentially because Windows Vista introduced an optimization

which preprocesses the token to reduce the complexity of the access check operation. In

practice, the access check is linear in the number of ACEs in the security descriptor.
Bonus

http://msdn.microsoft.com/en-us/library/aa379261.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/05/02/588350.aspx

3/3

chatter: Note that even though Bob can remove his membership in a group, the system still

knows that he’s just pretending. This is important, because the security descriptor might

contain a Deny ACE for people on Project Nosebleed. Even if Bob removes the Nosebleed

group membership from his token in an attempt to get around the Deny ACE, the operating

system won’t be fooled: “Nice try, Bob. I know it’s still you.”

Sponsorship message: I’d like to thank my pals over in the security team for reviewing

this article and making suggestions and corrections. This article is sponsored by the

AuthzAccessCheck function, which supports caching the results of an access check.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2006/09/21/764634.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

