
1/4

August 13, 2010

When do I need to use GC.KeepAlive?
devblogs.microsoft.com/oldnewthing/20100813-00

Raymond Chen

Finalization is the crazy wildcard in garbage collection.
It operates “behind the GC”,
running

after the GC has declared an object dead.
Think about it: Finalizers run on objects that have

no active references.
How can this be a reference to an object that has no references?

That’s just crazy-talk!

Finalizers are a Ouija board,
permitting dead objects to operate “from beyond the grave”
and

affect live objects.
As a result, when finalizers are involved, there is a lot of
creepy spooky juju

going on,
and you need to tread very carefully, or your soul will become
cursed.

Let’s step back and look at a different problem first.
Consider this class which doesn’t do

anything interesting
but works well enough for demonstration purposes:

class Sample1 {

private StreamReader sr;

public Sample1(string file) : sr(new StreamReader(file)) { }

public void Close() { sr.Close(); }

public string NextLine() { return sr.ReadLine(); }

}

What happens if one thread calls Sample1.NextLine()
and another thread calls

Sample1.Close() ?
If the NextLine() call wins the race,
then you have a stream closed

while it is in the middle of
its ReadLine method.
Probably not good.
If the Close() call

wins the race,
then when the NextLine() call is made,
you end up reading from a closed

stream.
Definitely not good.
Finally, if the NextLine() call runs to
completion before the

Close() ,
then the line is successfully read before the stream
is closed.

Having this race condition is clearly an unwanted state of
affairs since the result is

unpredictable.

Now let’s change the Close() method to a finalizer.

https://devblogs.microsoft.com/oldnewthing/20100813-00/?p=13153

2/4

class Sample2 {

private StreamReader sr;

public Sample2(string file) : sr(new StreamReader(file)) { }

~Sample2() { sr.Close(); }

public string NextLine() { return sr.ReadLine(); }

}

Remember that we learned that an object becomes eligible for garbage collection
when there

are no active references to it,
and that it can happen
even while a method on the object is still

active.
Consider this function:

string FirstLine(string fileName) {

Sample2 s = new Sample2(fileName);

return s.NextLine();

}

We learned that the Sample2 object becomes eligible
for collection during the execution of

NextLine() .
Suppose that the garbage collector runs and collects the object
while

NextLine is still running.
This could happen if ReadLine takes a long time,
say, because

the hard drive needs to spin up or there is a network
hiccup;
or it could happen just because

it’s not your lucky day
and the garbage collector ran at just the wrong moment.
Since this

object has a finalizer, the finalizer runs
before the memory is discarded, and the finalizer

closes the
 StreamReader .

Boom, we just hit the race condition we considered when
we looked at Sample1 :
The

stream was closed while it was being read from.
The garbage collector is a rogue thread that

closes the stream
at a bad time.
The problem occurs because the garbage collector doesn’t

know
that the finalizer is going to make changes to other objects.

Classically speaking,
there are three conditions which in combination lead to this problem:

1. Containment: An entity a
retains a reference to another entity b .

2. Incomplete encapsulation: The entity b
is visible to an entity outside a .

3. Propagation of destructive effect:
Some operation performed on entity a
has an effect

on entity b which alters
its proper usage (usually by rendering it useless).

The first condition (containment) is something you do without
a second’s thought.
If you

look at any class, there’s a very high chance that it has,
among its fields, a reference to

another object.

The second condition (incomplete encapsulation)
is also a common pattern.
In particular, if

b is an object with methods,
it will be visible to itself.

The third condition (propagation of destructive effect) is the tricky one.
If an operation on

entity a has a damaging
effect on entity b ,
the code must be careful not to damage it while

it’s still being
used.
This is something you usually take care of explicitly,
since you’re the one

http://blogs.msdn.com/b/oldnewthing/archive/2010/08/10/10048149.aspx

3/4

who wrote the code that calls the destructive method.

Unless the destructive method is a finalizer.

If the destructive method is a finalizer,
then
you do not have complete control over when it

will run.
And it is one of the fundamental laws of the universe that events
will occur at the

worst possible time.

Enter GC.KeepAlive() .
The purpose of GC.KeepAlive() is to force the garbage
collector

to treat the object as still live,
thereby preventing it from being collected,
and thereby

preventing the finalizer from running prematurely.

(Here’s the money sentence.)
You need to use GC.KeepAlive when the finalizer
for an

object has a destructive effect on a contained object.

The problem is that it’s not always clear which objects have
finalizers which have destructive

effect on a contained object.
There are some cases where you can suspect this is happening

due to the nature of the object itself.
For example, if the object manages something external

to the CLR,
then its finalizer will probably destroy the external object.
But there can be other

cases where the need for GC.KeepAlive
is not obvious.

A much cleaner solution than using GC.KeepAlive
is to use the IDisposable interface,

formalized by the using keyword.
Everybody knows that the using keyword ensures that

the
object being used is disposed at the end of the block.
But it’s also the case (and it is this

behavior that is important today)
that the using keyword also keeps the object alive
until

the end of the block.
(Why?
Because the object needs to be alive so that we can call Dispose

on it!)

This is one of the reasons I don’t like finalizers.
Since they operate underneath the GC,
they

undermine many principles of garbage collected systems.
(See also
resurrection.)
As we saw

earlier,
a correctly-written program cannot rely on side effects of a finalizer,
so in theory all

finalizers could be nop’d out
without affecting correctness.

The garbage collector purist in me also doesn’t like finalizers
because they prevent the

running time of a garbage collector to be
proportional to the amount of live data,
like say in a

classic two-space collector.
(There is also a small constant associated with the amount of

dead
data, which means that the overall complexity is proportional to the
amount of total

data.)

If I ruled the world, I would decree that the only thing you can do in
a finalizer is perform

some tests to ensure that all the associated
external resources have already been explicitly

released, and if not, raise
a fatal exception:
 System.Exception.ResourceLeak .

Bonus reading

http://blogs.msdn.com/clyon/archive/2006/04/25/583698.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/08/09/10047586.aspx

4/4

