
1/3

August 12, 2010

How can I find all objects of a particular type?
devblogs.microsoft.com/oldnewthing/20100812-00

Raymond Chen

More than one customer has asked a question like this:

I’m looking for a way to search for all instances of a particular
type at runtime.
My goal is to
invoke a particular method on each of those instances.
Note that I did not create these object
myself or have any other
access to them.
Is this possible?

Imagine what the world would be like if it were possible.

For starters, just imagine the fun you could have if you could
call typeof(Secure‐

String).GetInstances() .
Vegas road trip!

More generally, it breaks the semantics of AppDomain
boundaries,
since grabbing all

instances of a type lets you get objects from
another AppDomain,
which fundamentally

violates the point of AppDomains.
(Okay, you could repair this by saying that the Get‐

Instances
method only returns objects from the current AppDomain.)

This imaginary GetInstances method might return
objects which are awaiting finalization,

which violates
one of the fundamental assumptions of a finalizer, namely that there
are no

references to the object:
If there were, then it wouldn’t be finalized!
(Okay, you could repair

this by saying that the GetInstances
method does not return objects which are awaiting

finalization.)

On top of that, you break
the syncRoot pattern.

class Sample {

private object syncRoot = new object();

public void Method() {

 lock(syncRoot) { ... };

}
}

If it were possible to get all objects of a particular class,
then anybody could just reach in and

grab your private syncRoot
and call Monitor.Enter() on it.
Congratuations, the private

synchronization object you created
is now a public one that anybody can screw with,

https://devblogs.microsoft.com/oldnewthing/20100812-00/?p=13163
http://www.codeproject.com/KB/books/monitor_csharp_lock.aspx?display=Print#SyncRootPattern

2/3

defeating the whole purpose of having a private syncRoot.
You can no longer reason about

your syncRoot because you are no longer
in full control of it.
(Yes, this can already be done

with reflection, but at least when
reflecting, you know that you’re grabbing somebody’s

private field
called syncRoot , so you already recognize that you’re
doing something

dubious.
Whereas with
 GetInstances ,
you don’t know what each of the returned objects is

being used for.
Heck, you don’t even know if it’s being used!
It might just be garbage lying

around waiting to be collected.)

More generally, code is often written on the expectation that
an object that you never give out

a reference to is not accessible
to others.
Consider the following code fragment:

using (StreamWriter sr = new StreamWriter(fileName)) {

sr.WriteLine("Hello");

}

If it were possible to get all objects of a particular class,
you may find that your customers

report that they are getting an
 ObjectDisposedException
on the call to WriteLine .
How

is that possible?
The disposal doesn’t happen until the close-brace, right?
Is there a bug in

the CLR where it’s disposing an object too soon?

Nope, what happened is that some other thread did exactly what the
customer was asking for

a way to do:
It grabbed all existing StreamWriter instances and
invoked Stream‐

Writer.Close on them.
It did this immediately after you constructed the StreamWriter

and before you did your sr.WriteLine() .
Result: When your sr.WriteLine() executes,

it finds
that the stream was already closed, and therefore the write fails.

More generally, consider the graffiti you could inject into all output
files by doing

foreach (StreamWriter sr in typeof(StreamWriter).GetInstances()) {

sr.Write("Kilroy was here!");

}

or even crazier

foreach (StringBuilder rb in typeof(StringBuilder).GetInstances()) {

sb.Insert(0, "DROP TABLE users; --");

}

Now no StringBuilder is safe—the contents of
any StringBuilder can be corrupted at

any time!

If you could obtain all instances of a type,
the fundamental logic behind computer

programming breaks down.
It effectively becomes impossible to reason about code
because

anything could happen to
your objects at any time.

3/3

If you need to be able to get all instances of a class,
you need to add that functionality to the

class itself.
(GCHandle or WeakReference will
come in handy here.)
Of course, if you do

this, then you clearly opted into
the “anything can happen to your object at any time outside

your control” model and presumably your code operates accordingly.
You made your bed;

now you get to lie in it.

(And I haven’t even touched on thread safety.)

Bonus reading:
Questionable value of SyncRoot on Collections.

http://blogs.msdn.com/b/brada/archive/2003/09/28/50391.aspx

