
1/4

August 11, 2010

How do I get the reference count of a CLR object?
devblogs.microsoft.com/oldnewthing/20100811-00

Raymond Chen

A customer asked the rather enigmatic question (with no context):

Is there a way to get the reference count of an object in .Net?

Thanks,

Bob Smith

Senior Developer

Contoso

The CLR does not maintain reference counts, so there is no reference
count to “get”.
The

garbage collector only cares about whether an object
has zero references
or at least one

reference.
It doesn’t care if there is one, two, twelve, or five hundred—from
the point of view

of the garbage collector, one is as good as
five hundred.

The customer replied,

I am aware of that, yet the mechanism is somehow implemented by the GC…

What I want to know is whether at a certain point
there is more then one variable pointing to the
same object.

As already noted, the GC does not implement the “count the number
of references to this

object” algorithm.
It only implements the “Is it definitely safe to reclaim the memory
for his

object?” algorithm.
A null garbage collector always answers “No.”
A tracing collector looks for

references, but it only cares
whether it found one, not how many it found.

The discussion of “variables pointing to the same objects” is
somewhat confused, because you

can have references to an object
from things other than variables.
Parameters to a method

contain references,
the implicit this is also a reference,
and partially-evaluated expressions

also contain references.
(During execution of the line string s = o.ToString(); ,
at the

point immediately after o.ToString() returns
and before the result is assigned to s ,
the

string has an active reference but it isn’t stored in any
variable.)
And as we saw earlier,

merely storing a reference in a variable doesn’t prevent the
object from being collected.

https://devblogs.microsoft.com/oldnewthing/20100811-00/?p=13173
http://blogs.msdn.com/oldnewthing/archive/2010/01/27/9953807.aspx

2/4

It’s clear that this person
solved half of his problem, and just needs help with the other half,

the half that doesn’t make any sense.
(I like how he immediately weakened his request from

“I want the exact reference count”
to “I want to know if it is greater than one.”
Because as we

all know, the best way to solve a problem is to
reduce it to an even harder problem.)

Another person used some psychic powers to figure out what the real
problem is:

If I am reading properly into what you mean,
you may want to check out the Weak‐
Reference class.
This lets you determine whether an object has been collected.
Note that you
don’t get access to a reference count; it’s a
zero/nonzero thing.
If the WeakReference is
empty, it means the object has
been collected.
You don’t get a chance to act upon it
(as you
would if you were the last one holding a reference to it).

The customer explained that he tried
 WeakReference , but it didn’t work.
(By withholding

this information, the customer made the mistake of
not saying what he already tried and why

it didn’t work.)

Well this is exactly the problem:
I instantiate an object and then create a
 WeakReference to
it (global variable).

Then at some point the object is released
(set to null, disposed, erased from the face of the earth,
you name it)
yet if I check the IsAlive property it still returns true.

Only if I explicitly call to GC.Collect(0)
or greater before the check it is disposed.

The customer still hasn’t let go of the concept of reference
counting, since he says that the

object is “released”.
In a garbage-collected system, object are not released;
rather, you simply

stop referencing them.
And disposing of an object still maintains a reference;
disposing just

invokes the IDisposable.Dispose method.

FileStream fs = new FileStream(fileName);

using (fs) {

...

}

At the end of this code fragment, the FileStream has
been disposed, but there is still a

reference to it in the fs
variable.
Mind you, that reference isn’t very useful, since there isn’t

much
you can do with a disposed object,
Even if you rewrite the fragment as

using (FileStream fs = new FileStream(fileName)) {

...

}

the variable fs still exists after the close-brace;
it simply has gone out of scope (i.e., you

can’t access it any more).
Scope is not the same as lifetime.
Of course, the optimizer can step

in and make the object
eligible for collection
once the value becomes inaccessible, but there is

http://blogs.msdn.com/oldnewthing/archive/2006/03/23/558887.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/04/22/10000406.aspx
http://blogs.msdn.com/ericlippert/archive/2009/08/03/what-s-the-difference-part-two-scope-vs-declaration-space-vs-lifetime.aspx

3/4

no requirement that
this optimization be done.

The fact that the IsAlive property says true
even after all known references have been

destroyed is also no surprise.
The environment does not check whether an object’s last

reference
has been made inaccessible every time a reference changes.
One of the major

performance benefits of garbage collected systems
comes from the de-amortization of object

lifetime determination.
Instead of maintaining lifetime information about an object

continuously
(spending a penny each time a reference is created or destroyed),
it saves up

those pennies and splurges on a few dollars every so often.
The calculated risk (which usually

pays off)
is that the rate of penny-saving makes up for the occasional splurges.

It does mean that between the splurges, the garbage collector does not
know whether an

object has outstanding references or not.
It doesn’t find out until it does a collection.

The null garbage collector
takes this approach to an extreme by simply hoarding pennies and

never spending them. It saves a lot of money but consumes a lot of memory.
The other

extreme (common in unmanaged environments) is to spend
the pennies as soon as possible.

It spends a lot of money but reduces memory usage to the absolute minimum.
The designers

of a garbage collector work to find the right balance
between these two extremes,
saving

money overall while still keeping memory usage at a reasonable level.

The customer appears to have misinterpreted what the IsAlive
property means.
The

property doesn’t say whether there are any references to the object.
It says
whether the object

has been garbage collected.
Since the garbage collector can run at any time,
there is nothing

meaningful you can conclude if
IsAlive returns true,
since it can transition from alive to

dead while you’re talking about it.
On the other hand, once it’s dead, it stays dead;
it is valid

to take action when IsAlive is false .
(Note that there are two types of Weak‐

Reference ;
the difference is
when they issue the death certificate.)

The name IsAlive for the property could be viewed
as misleading if you just look at the

property name without reading the
accompanying documentation.
Perhaps a more accurate

(but much clumsier) name would have been
 HasNotBeenCollected .
The theory is,

presumably, that
if you’re using an advanced
class like WeakReference , which works “at the

GC level”,
you need to understand the GC.

The behavior the customer is seeing is correct.
The odds that the garbage collector has run

between annihilating
the last live reference and checking the IsAlive property
is pretty

low,
so when you ask whether the object has been collected,
the answer will be No.
Of course,

forcing a collection will cause the garbage collector to run,
and that’s what does the collection

and sets IsAlive to
 false .
Mind you, forcing the collection to take place
messes up the

careful penny-pinching
the garbage collector has been performing.
You forced it to pay for a

collection before it had finished saving
up for it, putting the garbage collector in debt.
(Is

http://blogs.msdn.com/b/oldnewthing/archive/2010/08/09/10047586.aspx
http://msdn.microsoft.com/system.weakreference.isalive.aspx
http://blogs.msdn.com/clyon/archive/2006/04/20/580255.aspx
http://blogs.msdn.com/clyon/archive/2006/05/01/588001.aspx

4/4

there a garbage collector debt collector?)
And the effect of a garbage collector going into debt

is that your program
runs slower than it would have if you had let the collector spend
its

money on its own terms.

Note also that forcing a generation-zero collection does not
guarantee that the object in

question will be collected:
It may have been promoted into a higher generation.

(Generational garbage collection takes advantage of typical real-world
object lifetime profiles

by spending only
fifty cents on a partial collection rather than a whole dollar
on a full

collection.
As a rough guide, the cost of a collection is proportional to the number
of live

object scanned,
so the most efficient collections are those which find mostly dead objects.)

Forcing an early generation-zero collection messes up the careful
balance between cheap-

but-partial collections and
expensive-and-thorough collections,
causing objects to get

promoted into higher generations before
they really deserve it.

Okay, that was a long discussion of a short email thread.
Maybe tomorrow I’ll do a better job

of keeping things short.

Bonus chatter:
In addition to the WeakReference class,
there is also the GCHandle

structure.

Bonus reading:
Maoni’s WebLog
goes into lots of detail on the internals of the CLR

garbage
collector.
Doug Stewart
created this
handy index.

http://blogs.msdn.com/maoni/
http://blogs.msdn.com/dougste/
http://blogs.msdn.com/dougste/archive/2010/02/18/an-index-to-maoni-s-blog-posts-about-the-gc.aspx

