
1/2

June 16, 2010

Why can't AppLocale just be added to the Compatibility
property sheet page?

devblogs.microsoft.com/oldnewthing/20100616-00

Raymond Chen

Commenter DoesNotMatter wants to know why AppLocale cannot just be added to the

Compatibility property sheet as a dropdown option.
One of the things about having a huge

topic backlog is that if I just wait long enough, there’s a good chance somebody else will

answer it, and then I don’t have to write anything. And more often than not, that somebody

else is Michael Kaplan, who addressed this question in April 2010: Not only is AppLocale not

installed by default, AppLocale does everything in its power to remind you that you shouldn’t

be using it!
AppLocale is the emergency compact spare tire that you pull out of your trunk. Its

job is to get you home, at which point you can fix the problem properly. You shouldn’t be

driving on your emergency compact spare as part of your normal daily routine.
Why does

changing the CP_ACP code page require a logoff/logon cycle? Because without it, you would

have a Frankenstein configuration situation, where two programs think they’re speaking the

same language to each other, but aren’t. This would happen if one program was launched

before you changed the locale, and the other was launched after it.
Sure, if the

communication was done through the clipboard CF_TEXT data format, or via one of the

system-defined window messages that contain strings, then the window manager can convert

from one code page to the other (though it will have to round-trip through Unicode). But

that’s an awful lot of work for something that isn’t even a valid steady-state configuration.

And besides, it wouldn’t even fix the other communication channels between processes, such

as custom clipboard formats or private window messages.
For example, suppose you have a

copy of LitWare running, and then you change the locale, and then you run another copy of

LitWare. You then drag an object from the first copy of LitWare to the second. If LitWare’s

custom data format uses ANSI strings, then the first copy will encode the object name using

the old locale, and the second copy will decode it with the new locale. And since this is a

custom data format, there’s nowhere the window manager or OLE can step in and say, “Oh,

wait, I know what you’re doing. There’s a string embedded in that structure. Let me convert it

for you.”
I encounter this problem myself with a Chinese-language program I use. The

program uses a Chinese code page rather than Unicode, and I have to use AppLocale to get it

to display anything other than meaningless gibberish. (And even then, it still displays what

appears to me to be mostly gibberish, but that part of the problem is my own fault for not

https://devblogs.microsoft.com/oldnewthing/20100616-00/?p=13693
http://blogs.msdn.com/b/oldnewthing/archive/2009/01/15/9319761.aspx#9327724
http://blogs.msdn.com/b/michkap/
http://blogs.msdn.com/b/michkap/archive/2010/04/22/10000546.aspx
http://en.wikipedia.org/wiki/Trunk_(automobile)
http://technet.microsoft.com/en-us/magazine/2008.11.windowsconfidential.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/06/03/10019214.aspx

2/2

knowing how to read very much Chinese.) I have to remember that I cannot copy/paste any

Chinese characters into or out of the program because the result will be garbage due to the

code page mismatch.

Mind you, you can just ignore the logoff reminder that appears when you change the default

locale and continue running your Frankenstein configuration. Just understand that you’re

now in a world where programs can no longer communicate with each other reliably.

