
1/2

June 11, 2010

How do I indicate that I want my window to follow right-
to-left layout rules?

devblogs.microsoft.com/oldnewthing/20100611-00

Raymond Chen

There are many ways, depending on how wide a scope you want.
If there is one specific

window that you want to follow right-to-left layout rules, then you pass the WS_EX_LAYOUT‐

RTL extended window style when you create the window. This extended style is inherited by

child windows, so once you set a top-level window to have right-to-left layout, all child

windows will have it, too. To block the WS_EX_LAYOUTRTL extended style from being

inherited by child windows, pass the WS_EX_NOINHERITLAYOUT style when you create the

parent window.
Sidebar: If you’re calling the MessageBox function, then you don’t directly

control the styles of the top-level window. But there’s a weird back-channel way to specify

that you want the message box dialog to have the WS_EX_LAYOUTRTL extended style: Begin

the lpText string with two U+200F characters. Then again, instead of MessageBox you

should be using the TaskDialogIndirect function which not only lets you customize the

text on the buttons, but also lets you pass the TDF_RTL_LAYOUT flag to indicate that you

want the dialog to be laid out according to RTL rules. (And as an aid to porting, the Task‐

Dialog and TaskDialogIndirect functions implicitly turn on the TDF_RTL_LAYOUT flag

if they find that pszContent is a pointer to a string—not a MAKEINTRESOURCE —which

begins with two U+200F characters.) End sidebar.¹
If you want right-to-left layout rules to

apply to all top-level windows in your process, you have two choices. You can either do it

programmatically or declaratively. (Similar to how you can specify DPI-awareness either

programmatically or declaratively.)
The programmatic way is to call SetProcessDefault‐

Layout(LAYOUT_RTL) from your application. The declarative way is to insert two left-to-right

marks (U+200E) at the beginning of the FileDescription version resource string of the

executable.
Note that the caveats which apply to changing the process DPI awareness

programmatically also apply to changing the default process layout programmatically: Code

which calls GetProcessDefaultLayout will see the default at the time of the call, even if

some code later on calls SetProcessDefaultLayout to change it.
Note also that it really is

the application’s call whether its default layout is left-to-right or right-to-left. A DLL

shouldn’t decide on its own to change the process default layout, at least not without

coöperation from that process. If you are a DLL and you want to create a specific window

with right-to-left layout, you should use the WS_EX_LAYOUTRTL method so that your

decision applies only to your DLL’s windows. (Otherwise you’re using a global setting to

https://devblogs.microsoft.com/oldnewthing/20100611-00/?p=13743
http://msdn.microsoft.com/en-us/library/ms645505(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms633543.aspx
http://msdn.microsoft.com/en-us/library/ms633543.aspx
http://msdn.microsoft.com/en-us/goglobal/bb688119.aspx#EDC
http://blogs.msdn.com/b/oldnewthing/archive/2008/12/11/9193695.aspx

2/2

manage a local problem.)
Bonus chatter: Why isn’t the default layout specified in the

manifest like DPI-awareness? Because RTL support was added in Windows 2000, which

predated application manifests by several years. If the feature were invented today, the

manifest would be a much better place for declaring it.
Update
¹ Commenter SCB pointed

out that there is indeed a flag to specify that you want RTL layout on your message box:

MB_RTLREADING . If that flag exists, then why also have the U+200F back-channel?

Answer: So that translators can mark a string as requiring RTL treatment without having to

go back and make code changes.

http://blogs.msdn.com/b/oldnewthing/archive/2008/12/11/9193695.aspx

