
1/2

May 26, 2010

How do I find the bounding box for a character in a font?
devblogs.microsoft.com/oldnewthing/20100526-00

Raymond Chen

A customer had the following question:

I’m looking for a way to get the height of text which consists
entirely of digits, for example
"123" ,
as these characters do not have any descent or internal leading.
I expected functions

like
GetTextExtent
to return the character’s ascent minus the internal leading, but
in fact it
returns the ascent plus the descent plus the internal leading.
I considered getting the font metrics
and taking the
 TEXTMETRICS.tmAscent , but I’m worried that
numbers in other languages
might have a nonzero descent and internal
leading.
Is there a function I can call to return the
“real” height of the
text?

Well, first of all, this question makes an assumption about digits
that isn’t even true in

English.
Fonts developed in recent years
tend to keep all digits the same height (and often
the

same width), but fonts
designed before the advent of computers
(or computer fonts which

were inspired by old-timey fonts)
will often vary the height, and sometimes even have digits

with descenders.
Here’s an example from the font Georgia:

058

Observe that the number zero is six pixels tall, whereas
the number eight is nine pixels tall,

and the number five has a two-pixel descender!

https://devblogs.microsoft.com/oldnewthing/20100526-00/?p=13913
http://msdn.microsoft.com/en-us/library/dd144937(VS.85).aspx

2/2

Okay, so you’re going to have to take the descent into account
for all languages, including

English.
Internal leading is the space above a character to separate it
from elements above it.

For example, you need some space above a capital T so that
the horizontal bar remains

readable.
Again, the assumption that English doesn’t need internal leading
is false.

Okay, but what about the original question?
Well, when I heard this question, my first

thoughts went back
to the early days of Win32 when the coolest new GDI feature
was paths,

and everybody was showing off
the fancy text effects
you could pull off with the aid of paths.

My initial instinct was therefore to use the
same technique
as those cool demos by combining

BeginPath ,
 TextOut ,
and EndPath .
Once I had a path, I could get its dimensions by

using
 PathToRegion and GetRgnBox .

Fortunately, it turns out that there’s an easier way.
The
GetGlyphOutline function
returns

the glyph metrics, which describe the bounding box of the
pixels of a character.

// Create an identity matrix

static const MAT2 c_mat2Identity = {

 { 0, 1 }, /* eM11 = 1.0 */

 { 0, 0 }, /* eM12 = 0.0 */

 { 0, 0 }, /* eM21 = 0.0 */

 { 0, 1 }, /* eM22 = 1.0 */

};

GetGlyphOutline(hdc, L'0', GGO_METRICS, &gm, 0, NULL, &c_mat2Identity);

The dimensions of the character are returned in the
 GLYPHMETRICS structure, and in

particular,
you can derive the bounding box from the
 gmptGlyphOrigin ,
 gmBlackBoxX ,

and
 gmBlackBoxY members.

Raymond Chen

Follow

http://msdn.microsoft.com/en-us/library/dd183441(VS.85).aspx
http://www.microsoft.com/mspress/books/sampchap/2344c.aspx
http://msdn.microsoft.com/en-us/library/dd144891(VS.85).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

