
1/3

May 6, 2010

What are these strange =C: environment variables?
devblogs.microsoft.com/oldnewthing/20100506-00

Raymond Chen

You won’t see them when you execute a SET command,
but if you write a program that

manually enumerates all the
environment variables and prints them out,
and if you launch it

from a command prompt,
then you’ll see weird
variables with names like =C: and whose

values correspond to
directories on that drive.
What are these things?

These variables are part of the private bookkeeping of the command
processor cmd.exe.

That’s why I added if you launch it from a command prompt
to the steps above, because if

you run the program from Explorer’s
Run dialog, you won’t see them.
If a cmd.exe is not in

the chain of custody of your environment block,
then you won’t see the weird cmd.exe

bookkeeping variables.

Okay, so the command processor sets these things, but what are they?
They are a leftover

from the command processor’s attempt to mimic
the old MS-DOS way that drives and

directories were handled.
Whereas in Win32, there is only one current directory,
in MS-DOS,

there was one current directory for each drive.
Consider the following sequence of

commands:

A> CD \SUBDIR

// current directory for drive A is A:\SUBDIR

A> B:

B> CD \TWO

// current directory for drive B is B:\TWO

B> A:

A> DIR

// shows a directory listing for A:\SUBDIR

During this sequence of commands, we start with A: as the
current drive and set its current

directory to A:\SUBDIR.
Next, we set the current drive to B: and set
B:\TWO as its current

directory.
Finally, we set the current drive back to A:,
and when we ask for a listing,
we get

the contents of A:\SUBDIR because that is the
current directory on the current drive.

Win32 does not have the concept of a separate current directory
for each drive, but the

command processor wanted to preserve
the old MS-DOS behavior because people were

accustomed to it
(and batch files relied upon it).
The solution was to store this “per-drive

https://devblogs.microsoft.com/oldnewthing/20100506-00/?p=14133

2/3

current directory”
in the environment, using a weird-o environment variable name
so it

wouldn’t conflict with normal environment variables.

If you repeated the above commands in cmd.exe, the output
is the same, but it is

accomplished in a very different way.

A> CD \SUBDIR

// Environment variable =A: set to A:\SUBDIR

// Current Win32 directory set to A:\SUBDIR

A> B:

B> CD \TWO

// Environment variable =B: set to B:\TWO

// current Win32 directory set to B:\TWO

B> A:

// Current Win32 directory set to A:\SUBDIR

A> DIR

// shows a directory listing for A:\SUBDIR

When we switch back to drive A:,
the command processor says,
“Hey, what was the current

directory on drive A: the last
time I was there?”
It looks into its environment and finds the

=A: variable,
which tells it, “Oh, it was A:\SUBDIR”.
And that’s the Win32 directory that it

sets as current.

But why put these internal variables in the environment?
Can’t they just be regular variables

inside the cmd.exe process?

The variables are exported into the environment because you
want these “fake per-drive

current directories” to be inherited
by child processes.
For example, consider that you are

sitting at your command prompt,
you run emacs, then from emacs, you shell out to another

command prompt.
You would expect that the nested command prompt will have the same

“per-drive current directories” that you set back in the outer
command prompt.

C:\SUBDIR> D:

D:\> emacs

M-x shell

D:\> C:

C:\SUBDIR>

// the "current directory on drive C" was inherited as expected

What should you do about these variables, then?

Nothing. Just let them be and do their jobs.
I’m just mentioning them here so you won’t freak

out when you see them.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

