
1/10

May 3, 2010

How do I accept files to be opened via IDropTarget
instead of on the command line?

devblogs.microsoft.com/oldnewthing/20100503-00

Raymond Chen

Commenter Yaron wants to know
how to use the new IDropTarget mechanism for receiving a

list of files
to open.
(Also asked by
Anthony Wieser as a comment to an article.)
The MSDN

documentation on Verbs and File Assocations mentions that
DDE has been deprecated as a

way of launching documents
and that
you should use the DropTarget method instead.
But

what is the DropTarget method?
(Note that the word method here is in the sense of
technique

and not in the C++ sense of function that
belongs to a class.)

The documentation in MSDN tells you what to do, but it does so
very tersely. It says to create

a DropTarget
key under the verb key and create a Clsid string
value whose data is the

string version of the CLSID for your
drop target.
The documentation tells you to be careful in

your
 IDropTarget::Drop , so it stands to reason that
 IDropTarget is the interface that

will be used.
From context, therefore, you should expect that the shell is going to
simulate a

drop on your drop target.

You can implement your drop target either as an in-process server
or a local server.
The in-

process case is well-known;
nearly all shell extensions are in-process.
But using an in-process

server for the DropTarget technique
only solves half the problem:
Sure, the

IDropTarget::Drop will take place and you will
get your IDataObject ,
but you still have

to transfer the file list from your shell extension
running inside the
context menu host
to your

application.
May as well let COM do the heavy lifting of marshalling the data.
(Well, okay,

maybe using COM is overkill.
You might have a lighter weight way of getting the data across,

but since that’s out of scope for today’s exercise, I’ll leave it
for you to figure out.)

Okay, let’s roll up our sleeves and get to it!
It turns out that nearly all the work is just creating

a COM local
server.
If you know how to do that already, then I apologize in advance
for the

oppressive boredom about to fall upon you.
I’ll try to remember to wake you up when

something interesting
is about to happen.
Note also that I am not an expert on COM local

servers,
so if you find a discrepancy between what I write and information from people
who

actually know what they’re doing, go with the people who
know what they’re doing.
(Actually,

that sentence pretty much applies in general to everything
I write.)
Indeed, I had never

https://devblogs.microsoft.com/oldnewthing/20100503-00/?p=14183
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#1353948
http://blogs.msdn.com/oldnewthing/archive/2008/03/20/8080229.aspx#8337835
http://blogs.msdn.com/oldnewthing/archive/2007/02/26/1763683.aspx
http://msdn.microsoft.com/en-us/library/cc144175.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/07/24/8768095.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/09/20/231739.aspx

2/10

written a COM local server before now,
so all of what you see here is the result of a crash

course
in COM local servers from reading the documentation.
(Translation: You could’ve

done this too.)

Start by adding some header files and a forward reference.

#include <shlobj.h>

#include <shellapi.h>

#include <new> // for new(nothrow)

void OpenFilesFromDataObject(IDataObject *pdto);

Next, I’m going to steal
the ProcessReference class
which I had created some time ago.
It’s

not the most efficient solution to the problem,
but it works well enough, and it’s a nice

preparatory step in case
a shell extension loaded into our process needs to take a process

reference.
We use the process reference object to keep track of our outstanding
objects and

locks.

ProcessReference *g_ppr;

Of course our custom drop target needs a class ID:

const CLSID CLSID_Scratch = { ... };

I leave it to you to fill in the CLSID structure
from the output of uuidgen -s .

Next, our simple drop target.
COM servers need to keep track of the number of objects that

have been created, so we’ll piggyback off our existing process reference.

http://blogs.msdn.com/oldnewthing/archive/2008/05/28/8555658.aspx

3/10

class SimpleDropTarget : public IDropTarget

{

public:

SimpleDropTarget() : m_cRef(1) { g_ppr->AddRef(); }

~SimpleDropTarget() { g_ppr->Release(); }

// *** IUnknown ***

STDMETHODIMP QueryInterface(REFIID riid, void **ppv)

{
 if (riid == IID_IUnknown || riid == IID_IDropTarget) {

 ppv = static_cast<IUnknown>(this);

 AddRef();

 return S_OK;

 }

 *ppv = NULL;

 return E_NOINTERFACE;

}
STDMETHODIMP_(ULONG) AddRef()

{
 return InterlockedIncrement(&m_cRef);

}
STDMETHODIMP_(ULONG) Release()

{
 LONG cRef = InterlockedDecrement(&m_cRef);

 if (cRef == 0) delete this;

 return cRef;

}

Next come the methods of IDropTarget ,
none of which are particularly interesting.
We just

say that we are going to copy the data.

4/10

// *** IDropTarget ***

STDMETHODIMP DragEnter(IDataObject *pdto,

 DWORD grfKeyState, POINTL ptl, DWORD *pdwEffect)

{
 *pdwEffect &= DROPEFFECT_COPY;

 return S_OK;

}
STDMETHODIMP DragOver(DWORD grfKeyState,

 POINTL ptl, DWORD *pdwEffect)

{
 *pdwEffect &= DROPEFFECT_COPY;

 return S_OK;

}
STDMETHODIMP DragLeave()

{
 return S_OK;

}
STDMETHODIMP Drop(IDataObject *pdto, DWORD grfKeyState,

 POINTL ptl, DWORD *pdwEffect)

{
 OpenFilesFromDataObject(pdto);

 *pdwEffect &= DROPEFFECT_COPY;

 return S_OK;

}
private:

LONG m_cRef;

};

People who know how COM servers work wake up:
When something is dropped on

our drop target, we call
 OpenFilesFromDataObject .
That’s actually not all that interesting,

but at least it’s
nontrivial.
People who know how COM servers work can go back to

sleep now.

The next part of the code is just setting up our class factory.

5/10

class SimpleClassFactory : public IClassFactory

{

public:

// *** IUnknown ***

STDMETHODIMP QueryInterface(REFIID riid, void **ppv)

{
 if (riid == IID_IUnknown || riid == IID_IClassFactory) {

 ppv = static_cast<IUnknown>(this);

 AddRef();

 return S_OK;

 }

 *ppv = NULL;

 return E_NOINTERFACE;

}
STDMETHODIMP_(ULONG) AddRef()

{
 return 2;

}
STDMETHODIMP_(ULONG) Release()

{
 return 1;

}
// *** IClassFactory ***

STDMETHODIMP CreateInstance(IUnknown *punkOuter, REFIID riid, void **ppv)

{
 *ppv = NULL;

 if (punkOuter) return CLASS_E_NOAGGREGATION;

 SimpleDropTarget *pdt = new(nothrow) SimpleDropTarget();

 if (!pdt) return E_OUTOFMEMORY;

 HRESULT hr = pdt->QueryInterface(riid, ppv);

 pdt->Release();

 return hr;

}
STDMETHODIMP LockServer(BOOL fLock)

{
 if (!g_ppr) return E_FAIL; // server shutting down

 if (fLock) g_ppr->AddRef(); else g_ppr->Release();

 return S_OK;

}
};
SimpleClassFactory s_scf;

The LockServer call takes advantage of our
process reference object by forwarding lock

and unlock
calls into the reference count of the process reference object.
This keeps our

process running until the server is unlocked.

Remember that COM rules specify that the class factory itself
does not count as an

outstanding COM object, so we don’t use
the same m_punkProcess trick that we did with

our drop target.
Instead, we just use a static object.

6/10

People who know how COM servers work wake up:
The COM server code is pretty

much done.
Now we’re back to user interface programming.

The next part of the code is just copied from our scratch program,
with the following

changes:

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 g_hwndChild = CreateWindow(

 TEXT("listbox"), NULL, WS_CHILD | WS_VISIBLE | WS_TABSTOP,

 0, 0, 0,0, hwnd, (HMENU)1, g_hinst, 0);

 return TRUE;

}

The list box is not an important part of the program.
We’ll just fill it with data to prove that

we actually did something.

void OpenFilesFromDataObject(IDataObject *pdto)

{

if (!g_hwndChild) { /* need to create a new main window */ }

FORMATETC fmte = { CF_HDROP, NULL, DVASPECT_CONTENT,

 -1, TYMED_HGLOBAL };

STGMEDIUM stgm;

if (SUCCEEDED(pdto->GetData(&fmte, &stgm))) {

 HDROP hdrop = reinterpret_cast<HDROP>(stgm.hGlobal);

 UINT cFiles = DragQueryFile(hdrop, 0xFFFFFFFF, NULL, 0);

 for (UINT i = 0; i < cFiles; i++) {

 TCHAR szFile[MAX_PATH];

 UINT cch = DragQueryFile(hdrop, i, szFile, MAX_PATH);

 if (cch > 0 && cch < MAX_PATH) {

 ListBox_AddString(g_hwndChild, szFile);

 }

 }

 ReleaseStgMedium(&stgm);

}
}

The OpenFilesFromDataObject function does only
enough work to prove that it actually

got the list of file names.
When we receive a data object from the simulated drop,
we retrieve

the HDROP and enumerate the files in it.
For each file, we add it to the list box.

There’s some code I’ve not bothered to write: Namely, if
a request to open some files comes

in after the user closed
our main window, we need to open a new main window.
(Exercise:

How can this happen?)

Another difference between this program and real life is that in
real life, your OpenFiles‐

FromDataObject
would do some real work.
But wait,
if your function does any actual work,

you should just AddRef the data object and return,
so that the shell can return to

7/10

interacting with the user.
If you stop to do a lot of work before returning, the shell will
lock

up because it’s waiting for your drop to complete.

// Version of OpenFilesFromDataObject that is more

// appropriate for real life.

void OpenFilesFromDataObject(IDataObject *pdto)

{

if (!g_hwndChild) { /* need to create a new main window */ }

pdto->AddRef();

PostMessage(GetParent(g_hwndChild), WM_OPENFILES, 0,

 reinterpret_cast<LPARAM>(pdto));

}

case WM_OPENFILES:

IDataObject *pdto = reinterpret_cast<IDataObject*>(lParam);

... rest of code from the original OpenFilesFromDataObject ...

pdto->Release();

break;

In real life, you just AddRef the data object
and then post a message to finish processing it

later.
The aim here is to release the shell thread as quickly as
possible.
When the posted

message is received, we can
extract the information from the data object at our leisure.

People who know how COM servers work can go back to sleep now.

Finally, we hook up our class factories to the main program:

8/10

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR lpCmdLine, int nShowCmd)

{

 MSG msg;

 HWND hwnd;

 g_hinst = hinst;

 if (!InitApp()) return 0;

 if (SUCCEEDED(CoInitialize(NULL))) {/* In case we use COM */

 HRESULT hrRegister;

 DWORD dwRegisterCookie;

 {

 ProcessReference ref;

 g_ppr = &ref;

 hrRegister = CoRegisterClassObject(CLSID_Scratch, &s_scf,

 CLSCTX_LOCAL_SERVER, REGCLS_MULTIPLEUSE,

 &dwRegisterCookie);

 hwnd = CreateWindow(

 TEXT("Scratch"), /* Class Name */

 TEXT("Scratch"), /* Title */

 WS_OVERLAPPEDWINDOW, /* Style */

 CW_USEDEFAULT, CW_USEDEFAULT, /* Position */

 CW_USEDEFAULT, CW_USEDEFAULT, /* Size */

 NULL, /* Parent */

 NULL, /* No menu */

 hinst, /* Instance */

 0); /* No special parameters */

 if (CompareStringA(LOCALE_INVARIANT, NORM_IGNORECASE,

 lpCmdLine, -1, "-Embedding", -1) != CSTR_EQUAL &&

 CompareStringA(LOCALE_INVARIANT, NORM_IGNORECASE,

 lpCmdLine, -1, "/Embedding", -1) != CSTR_EQUAL) {

 /* OpenFilesFromCommandLine(); */

 }

 ShowWindow(hwnd, nShowCmd);

 while (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 g_hwndChild = NULL;

 } // wait for process references to die

 g_ppr = NULL;

 if (SUCCEEDED(hrRegister)) {

 CoRevokeClassObject(dwRegisterCookie);

 }

 CoUninitialize();

 }

 return 0;

}

After creating our process reference,
we register our class factory by calling
 CoRegister‐

ClassObject .
We do this even if not invoked by COM, because we want COM to
be able to

find us once we’re up and running:
If the user runs the application manually and then

9/10

double-clicks
an associated document, we want that document to be handed to us
rather than

having COM launch another copy of the program.

After creating the window, we check if the command line is
 -Embedding or /Embedding .

This is the magic command line switch which COM gives us
when we are being launched as a

local server.
If we don’t have that switch, then we’re being launched
with a file name on our

command line, so proceed with
“old school” command line parsing.
(I didn’t bother writing

the
 OpenFilesFromCommandLine
function since it is irrelevant to the topic.)

After our message loop exits, we clear the g_hwndChild
so OpenFilesFromDataObject

knows that there is no
main window any more.
In real life, we’d have to create a new main

window and restart
the message loop.

Once all outstanding COM objects and server locks and process
references are gone,
we can

tear down the process.
We unregister the COM server (if we registered it)
so that COM won’t

try to ask us to open any more documents.
(COM will instead launch a new copy of the

program.)

And that’s it.

Oh wait, we also have to register this program so COM and the shell
can find us.

Registering the COM server is just a matter of setting the registry
key

[HKCR\CLSID\{...}\LocalServer32]

@="C:\\Path\\To\\scratch.exe"

You probably should also set a friendly name into
 HKCR\CLSID\{...} so people will have
a

clue what your server is for.

People who know how COM servers work wake up:
After we register our class with

COM,
we can register it with the shell.
For demonstration purposes, we’ll make our

command a secondary
verb on text files.

[HKCR\txtfile\shell\scratch\DropTarget]

"Clsid"="{...}"

Wow, all we had to do was set two registry values and boom,
we can now accept files via drop

target.
Multiselect a whole bunch of text files,
right-click them,
and then select “scratch”.
The

shell sees that the verb is registered as a drop target,
so it calls CoCreateInstance on the

CLSID
you provided.
COM looks up the CLSID in the registry and finds the
path to your

program.
Your program runs with the -Embedding flag,
registers its class factory, and

awaits further instructions.
COM asks your class factory to create a drop target,
which it

returns to the shell.
The shell then performs the simulated drop,
and when you get the

IDropTarget::Drop ,
your code springs into action and extracts all the files in the
data

object.

10/10

Now that we have all this working, it’s just one more tiny
step to register your application’s

drop target so that
it is invoked
when the user drops a group of files on the
EXE itself
(or on a

shortcut to the EXE):

[HKLM\Software\Microsoft\Windows\CurrentVersion\App Paths\scratch.exe]

"DropTarget"="{...}"

With this additional registration, grab that bunch of files
and drop it on the scratch.exe

icon.
Instead of passing all those files on the command line
(and possibly overflowing the

command line limit),
the shell goes through the same procedure as it did with the
context

menu to hand the list of files to your program
via the data object.

Nearly all of the work here was just managing the COM local server.
The parts that had to do

with the shell were actually quite small.

Raymond Chen

Follow

http://msdn.microsoft.com/en-us/library/cc144150.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

