
1/2

April 30, 2010

If it's not yours, then don't mess with it without
permission from the owner

devblogs.microsoft.com/oldnewthing/20100430-00

Raymond Chen

It’s surprising how many principles of real life also apply to computer programming. For

example, one of the rules of thumb for real life is that is that if something doesn’t belong to

you, then you shouldn’t mess with it unless you have permission from the owner. If you want

to ride Jimmy’s bike, then you need to have Jimmy’s permission. Even if Jimmy leaves his

bicycle unlocked in his driveway, that doesn’t mean that it’s available for anyone to take or

borrow.
In computer programming, the code that creates an object (or on whose behalf the

object is created) controls what is done with the object, and if you’re not that component,

then it’s only right to get the permission of that component before you start messing with

that it thought was its private property.
Application compatibility is, in large part, dealing

with programs which violate this rule of civilized society, programs which directly

manipulate the contents of list views they did not create, use reflection to access private

members of classes, that sort of thing. But I won’t use that as the motivating example this

time, because you’re all sick and tired of that.
Instead, let’s look at the low-fragmentation

heap. The question is, “Under what conditions can I convert a heap to a low-fragmentation

heap?”
Well, if you called HeapCreate , then that heap is yours and you decide what the

rules are. If you want that heap to be a low-fragmentation heap, then more power to you.
If

you didn’t call HeapCreate then that heap doesn’t belong to you; you’re just a guest. But of

course the owner of the heap can grant permission to you, at which point you are free to do

whatever it was the owner said you could do. If Jimmy says, “You can borrow my bike if it’s

just sitting in the driveway,” then you can borrow his bicycle if it is just sitting in the

driveway. But if it’s in the garage, then you can’t borrow it. And even if it’s sitting in the

driveway, you can’t sell it. You can only borrow it.
Okay, let’s look at heaps again. If you are

an executable, then the process heap was created on your behalf. (This is not obvious, but

that’s the guidance I’ve received from the people who work with this sort of thing.) Therefore,

if you want, you can call GetProcessHeap and convert that heap to a low-fragmentation

heap. It’s the heap for your process, so if you want it to be a low-fragmentation heap, the

heap folks say that’s okay with them.
On the other hand, if you’re writing a DLL, then the

process heap does not belong to you, nor was it created on your behalf. It belongs to the

executable that loaded your DLL, and it is that executable which decides what type of heap it

wants. If you would prefer that your DLL use a low-fragmentation heap, you can include that

https://devblogs.microsoft.com/oldnewthing/20100430-00/?p=14203

2/2

in the guidance in your DLL’s documentation, but be aware that the process heap is shared

with all DLLs in the process, so the hosting application may not be able to comply with your

guidance if it is also using another DLL whose guidance documentation says that it should

not be used with a low-fragmentation heap. If a low-fragmentation heap is really important

to your DLL, then you can create your own heap with HeapCreate and set it into low-

fragmentation mode. When you create a heap with HeapCreate , it’s your heap, and you get

to decide what the rules are.
If you use the C runtime library default heap, then that heap is

under the control of the C runtime library, and you don’t have the rights to change its

parameters. However, the C runtime library is one of the examples where you’re allowed to

use an object that’s not yours if you have permission from the owner: The _get_heap_handle

function was specifically created so that you could convert the heap to a low-fragmentation

heap. But now that you’ve unwrapped one layer of ownership, there is still the matter of

which of the C runtime’s clients is the decision-maker with regard to how that heap is to be

configured?
Remember that a DLL is a guest in the host process. You don’t go changing the

carpets in someone’s house just because you’re visiting.

If you linked the C runtime library statically, then you are the only client of that heap, and

you are therefore free to convert it to a low-fragmentation heap. (If you bring your own

towels to someone’s house, then you are free to abuse them in any manner you choose.) On

the other hand, if you linked the C runtime library dynamically, then you’re using the shared

C runtime heap, and the authority to determine the mode of that heap belongs to the hosting

executable.

Raymond Chen

Follow

http://msdn.microsoft.com/en-us/library/csd157zx(VS.80).aspx
http://blogs.msdn.com/oldnewthing/archive/2009/12/02/9931183.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

