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At the 2008 PDC, somebody stopped by the Ask the Experts table with a question about the

heap manager.

I don’t understand why the heap manager is allocating a new segment. I allocated a bunch of
small blocks, then freed nearly all of them. And then when my program makes a large
allocation, it allocates a new segment instead of reusing the memory I had just freed.

Under the classical model of the heap, the heap manager allocates a large chunk of memory

from lower-level operating system services, and then when requests for memory come in

from the application, it carves blocks of memory from the big chunk and gives them to the

application. (These blocks are called busy.) When those blocks of memory are freed, they are

returned to the pool of available memory, and if there are two blocks of free memory adjacent

to each other, they are combined (coalesced) to form a single larger block. That way, the

block can be used to satisfy a larger allocation in the future.
Under the classical model,

allocating memory and then freeing it is a net no-operation. (Nitpicky details

notwithstanding.) The allocation carves the memory out of the big slab of memory, and the

free returns it to the slab. Therefore, the situation described above is a bit puzzling. After the

memory is freed back to the heap, the little blocks should coalesce back into a block big

enough to hold a larger allocation.
I sat and wondered for a moment, trying to think of cases

where coalescing might fail, like if they happened to leave an allocated block right in the

middle of the chunk. Or maybe there’s some non-classical behavior going on. For example,

maybe the look-aside list was keeping those blocks live.
As I considered the options, the

person expressed disbelief in a different but telling way:

You’d think the low-fragmentation heap (LFH) would specifically avoid this problem.

Oh wait, you’re using the low-fragmentation heap! This is a decidedly non-classical heap

implementation: Instead of coalescing free blocks, it keeps the free blocks distinct. The idea

of the low-fragmentation heap is to reduce the likelihood of various classes of heap

fragmentation problems:

https://devblogs.microsoft.com/oldnewthing/20100429-00/?p=14213
http://en.wikipedia.org/wiki/Classical_physics
http://en.wikipedia.org/wiki/Modern_physics
http://blogs.technet.com/askperf/archive/2007/06/29/what-a-heap-of-part-two.aspx
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You want to make a large allocation, and you almost found it, except that there’s a small

allocation in the middle of your large block that is in your way.

You have a lot of free memory, but it’s all in the form of teeny tiny useless blocks.

That first case is similar to what I had been considering: where you allocated a lot of memory,

free most of it, but leave little islands behind.
The second case occurs when you have a free

block of size N, and somebody allocates a block of size M < N. The heap manager breaks the

large block into two smaller blocks: a busy block of size M and a free block of size (N − M).

These “leftover” free blocks aren’t a problem if your program later requests a block of size

N − M: The leftover block can be used to satisfy the allocation, and no memory goes wasted.

But if your program never asks for a block of size N − M, then the block just hangs around as

one of those useless blocks.
Imagine, for concreteness, a program that allocates memory in a

loop like this:

p1 = alloc(128)

p2 = alloc(128)

free(p1)

p3 = alloc(96)

(Keep p2  and p3  allocated.)

Repeat

Under the classical model, when the request for 96 bytes comes in, the memory manager sees

that 128-byte block (formerly known as p1 ) and splits it into two parts, a 96-byte block and

a 32-byte block. The 96-byte block becomes block p3 , and the 32-byte block sits around

waiting for somebody to ask for 32 bytes (which never happens).
Each time through this

loop, the heap grows by 256 bytes. Of those 256 bytes, 224 are performing useful work in the

application, and 32 bytes are sitting around being one of those useless tiny memory

allocations which contributes to fragmentation.
The low-fragmentation heap tries to avoid

this problem by keeping similar-sized allocations together. A heap block only gets re-used for

the same size allocation it was originally created for. (This description is simplified for the

purpose of the discussion.) (I can’t believe I had to write that.)
In the above scenario, the low-

fragmentation heap would respond to the request to allocate 96 bytes not by taking the

recently-freed 128-byte block and splitting it up, but rather by making a brand new 96-byte

allocation. This seems wasteful. After all, you now allocated 128 + 128 + 96 = 352 bytes even

though the application requested only 128 + 96 = 224 bytes. (The classical heap would have

re-used the first 96 bytes of the second 128-byte block, for a total allocation of

128 + 128 = 256 bytes.)
This seemingly wasteful use of memory is really an investment in the

future. (I need to remember to use that excuse more. “No, I’m not being wasteful. I’m just

investing in the future.”)
The investment pays off at the next loop iteration: When the request

for 128 bytes comes in, the heap manager can return the 128-byte block that was freed by the

previous iteration. Now there is no waste in the heap at all!
Suppose the above loop runs

1000 times. A classical heap would end up with a thousand 128-byte allocations, a thousand

96-byte allocations, and a thousand 32-byte free blocks on the heap. That’s 31KB of memory

http://msdn.microsoft.com/en-us/library/aa366750.aspx
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in the heap lost to fragmentation, or about 12%. On the other hand, the low-fragmentation

heap would end up with a thousand 128-byte allocations, a thousand 96-byte allocations, and

one 128-byte free block. Only 128 bytes has been lost to fragmentation, or just 0.06%.
Of

course, I exaggerated this scenario in order to make the low-fragmentation heap look

particularly good. The low-fragmentation heap operates well when heap allocation sizes tend

to repeat, because the repeated-size allocation will re-use a freed allocation of the same size.

It operates poorly when you allocate blocks of a certain size, free them, then never ask for

blocks of that size again (since those blocks just sit around waiting for their chance to shine,

which never comes). Fortunately, most applications don’t fall into this latter category:

Allocations tend to be for a set of fixed sizes (fixed-size objects), and even allocations for

variable-sized objects tend to cluster around a few popular sizes.
Generally speaking, the low-

fragmentation heap works pretty well for most classes of applications, and you should

consider using it. (In fact, I’m told that the C runtime libraries have converted the default C

runtime heap to be a low-fragmentation heap starting in Visual Studio 2010.)
On the other

hand, it’s also good to know a little of how the low-fragmentation heap operates, so that you

won’t be caught out by its non-classical behavior. For example, you should now be able to

answer the question which was posed at Ask the Experts. As you can see, it often doesn’t take

much to be an expert. You can do it, too.

Sidebar: Actually, I was able to answer the customer’s question even without knowing

anything about the low-fragmentation heap prior to the customer mentioning it. (Indeed, I

had barely even heard of it until that point.) Just given the name low-fragmentation heap, I

was able to figure out roughly how such a beast would have operated. I wasn’t correct on the

details, but the underlying principles were good. So you see, you don’t even have to know

what you’re talking about to be an expert. You just have to be able to take a scenario and

think, “How would somebody have designed a system to solve this problem?”
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