
1/4

April 28, 2010

What happens to the contents of a memory-mapped file
when a process is terminated abnormally?

devblogs.microsoft.com/oldnewthing/20100428-00

Raymond Chen

Bart wonders what happens to the dirty contents of a memory-mapped file when an

application is terminated abnormally.

From the kernel’s point of view, there isn’t much difference between a normal and an

abnormal termination. In fact, the last thing that ExitProcess does is Terminate‐

Process(GetCurrentProcess(),
ExitCode) , so in a very real sense the two operations are

identical from the kernel’s point of view. The only difference is that in a controlled

termination, DLLs get their DLL_PROCESS_DETACH notifications, whereas in an abnormal

termination, they don’t. But given that the advice for DLLs is to do as little as possible during

process termination (including suppressing normal cleanup), the difference even there is

negligible.

Therefore, the real question is What happens to the dirty contents of a memory-mapped file

when an application exits without closing the handle?

If a process exits without closing all its handles, the kernel will close them on the process’s

behalf. Now, in theory, the kernel could change its behavior depending on why a handle is

closed—skipping some steps if the handle is being closed as part of cleanup and performing

additional ones if it came from an explicit CloseHandle call. So it’s theoretically possible

that the unwritten memory-mapped data may be treated differently. (Although it does violate

the principle of not keeping track of information you don’t need. But as we’ve seen,

sometimes you have to violate a principle.)

But there’s also the guarantee that multiple memory-mapped views of the same local file are

coherent; that is, that changes made to one view are immediately reflected in other views.

Therefore, if there were another view of that memory-mapped file which you neglected to

close manually, any changes you had made to that view would still be visible in other views,

so the contents were not lost. It’s not like the kernel is going to fire up its time machine and

say, “Okay, those writes to the memory-mapped file which this terminated application made,

I’m going to go back and undo them even though I had already shown them to other

applications.”

https://devblogs.microsoft.com/oldnewthing/20100428-00/?p=14223
https://web.archive.org/web/20100130070610/http://blogs.msdn.com/oldnewthing/pages/407234.aspx#1165882
https://devblogs.microsoft.com/oldnewthing/20090216-00/?p=19133
https://devblogs.microsoft.com/oldnewthing/20100322-00/?p=14533
https://devblogs.microsoft.com/oldnewthing/20031007-00/?p=42263

2/4

In other words, in the case where the memory-mapped view is to a local file, and there

happens to be another view on the file, then the changes are not discarded, since they are

being kept alive by that other view.

Therefore, if the kernel were to discard unflushed changes to the memory-mapped view, it

would have to have not one but two special-cases. One for the “this handle is being closed

implicitly due to an application exiting without closing all its handles” case and another for

the “this handle being closed implicitly due to an application exiting without closing all its

handles when the total number of active views is less than two.”

I don’t know what the final answer is, but if the behavior were any different from the process

closing the handle explicitly, it would require two special-case behaviors in the kernel. I

personally consider this unlikely. Certainly if I were writing an operating system, I wouldn’t

bother writing these two special cases.

If you think like the memory manager, then you come to the same conclusion from a

different direction. If you think about the lifetime of a committed page, there are a small set

of operations each page type needs to perform.

Page in: Produce the contents of the page.

Make dirty: The page has been written to for the first time.

Page out dirty: The page is about to be removed from memory. The application has

written to the page since it was paged in.

Page out clean: The page is about to be removed from memory. The application has not

written to the page since it was paged in.

Decommit dirty: The page is about to be freed and it was written to since it was paged

in.

Decommit clean: The page is about to be freed and it was not written to since it was

paged in.

The different types of committed pages implement these operations in different ways.

Because, after all, that’s what makes them different.

Zero-initialized memory

Page in: Fill the page with zeroes.

Make dirty: Locate a free page in the swap file, assign it to this page, set type to

“allocated memory”.

Page out dirty: (never happens)

Page out clean: Do nothing.

Decommit dirty: (never happens)

Decommit clean: Do nothing.

3/4

Allocated memory

Page in: Read page contents from swap file.

Make dirty: Do nothing.

Page out dirty: Write page contents to swap file.

Page out clean: Do nothing.

Decommit dirty: Free the page from the swap file.

Decommit clean: Free the page from the swap file.

Memory-mapped file

Page in: Read page contents from file.

Make dirty: Do nothing.

Page out dirty: Write page contents to file.

Page out clean: Do nothing.

Decommit dirty: Write page contents to file.

Decommit clean: Do nothing.

There are other types of pages (such as copy-on-write pages, the null page, and physical

pages, but they aren’t relevant here.)

Note that these operations apply to the pages and not to the address space. Memory can be

committed without being visible in the address space, and a single page can be visible in

multiple address spaces at once, or even multiple times within the same address space! The

reason two views onto the same local file are coherent is that they are merely two

manifestations of the same underlying committed page. The part of the memory manager

that manages committed memory doesn’t know where in the address space (if anywhere) the

memory is going to be mapped, nor does it know why the requested operation is taking place

(beyond the circumstances implied by the operation itself).

When a memory-mapped file page is decommitted, the appropriate Decommit function is

called, and if the page is dirty, then the contents are flushed to the underlying file. It doesn’t

know why the decommit happened, so it can’t perform any special shortcuts depending on

the circumstances that led to the decommit.

Consider a memory-mapped file with two views. One view closes normally. The page is still

committed (the second view is still using it), so no Decommit happens yet. Then the process

which was using the second view terminates abnormally. The Decommit must still be treated

as a normal (not abnormal) decommit, because the first process did terminate normally, and

therefore is under the not unreasonable expectation that its changes will make it into the file.

In order to protect against discarding changes which earlier (now-closed) views had made, an

extra bit would have to be carried for each committed page that says, “This page contains

data that we promised to write back to the file (because somebody wrote to it and then closed

the view normally).” You would set this flag on every page in a view when you close the view

normally, or if you close the view due to abnormal process termination if there are other still-

running processes that are using the view (because the changes are visible to them), and you

https://devblogs.microsoft.com/oldnewthing/20040810-00/?p=38203
https://devblogs.microsoft.com/oldnewthing/20031007-00/?p=42263

4/4

would clear this flag after each Page out operation. Then you could add another type of

decommit, Decommit leaked, which is used when a page that contains no changes from

properly-closed views is decommitted because the last remaining reference to it was from a

process that terminated abnormally.

You could do all this work in your memory manager, but why bother? It’s additional

bookkeeping just to optimize the case where somebody is doing something wrong.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20070719-00/?p=25943
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

