
1/2

April 16, 2010

The mysterious stock bitmap: There's no way to summon
it, but it shows up in various places

devblogs.microsoft.com/oldnewthing/20100416-00

Raymond Chen

A number of stock GDI objects are made available by the
 GetStockObject function, but

one stock GDI object
that is mysteriously missing is the stock bitmap.
You can’t summon the

stock bitmap, but it manages to show up in
various places,
some of them perhaps

unexpected.

The stock bitmap is a monochrome 1×1 bitmap which GDI uses
in various places where it has

to produce a HBITMAP
even though there really isn’t any bitmap worth speaking of.
In other

words, it’s used when GDI has to return something
but would rather return nothing.

When you create a memory DC, the current bitmap selected into it
is the stock bitmap.

When you create a metafile, the current bitmap is the stock bitmap.

Every DC and metafile has a current bitmap (which you can retrieve
with GetCurrent‐

Object), but when GDI creates a brand
new DC or metafile, it doesn’t know what bitmap the

program is
going to pass to SelectObject —after all,
predicting the future has yet to be

perfected.
As a placeholder, it sticks in the dummy static bitmap.

There has to be a bitmap (as opposed to just leaving it NULL),
because the SelectObject

function returns the previous
object or NULL on failure,
so there needs to be a way to tell the

difference between
“I wasn’t able to select the bitmap you requested”
and
“I was able to select

the bitmap you requested, but there was no
old bitmap.”
Returning NULL would also break

the common coding pattern:

// select the new bitmap and save the old one

HBITMAP hbmPrev = SelectObject(hdc, hbmNew);

 ... do something with hdc ...

// all done - restore the original bitmap

SelectObject(hdc, hbmPrev);

If SelectObject had returned NULL
when there was no bitmap previously selected into

the DC,
then the attempt to restore the original bitmap would fail.
(Because GDI can’t tell

whether you passed it a
 (HBITMAP)NULL or a
 (HBRUSH)NULL or a
 (HPEN)NULL or…)

https://devblogs.microsoft.com/oldnewthing/20100416-00/?p=14313

2/2

Normally, a single bitmap cannot be selected into more than one DC,
but the stock bitmap

has the magical power that
it can be selected into multiple DCs at once.
Without this magical

power, GDI would have to create a different
dummy bitmap to select into each newly-created

DC and carry it
around so that it can be selected back into the DC just before it
is destroyed.

Seems awful wasteful to allocate an extra bitmap per DC just for
this,
especially back in the

days of 16-bit Windows when GDI heap space
was extremely limited.

There is one more place (that comes to mind) where the stock
bitmap appears, and it’s

somewhat unexpected:

When you try to create a 0×y or a
x×0 bitmap with the CreateBitmap
or Create‐

CompatibleBitmap function
you get the stock bitmap back.

In other words, if you ask for a nothing-bitmap,
you get the dummy bitmap back.
This is

analogous to the case of calling malloc(0) ,
where the implementation is permitted to

return a pointer to zero bytes.
In other words, malloc(0)
can return a non- NULL value

which
you can’t dereference; the only things you can do with it is
 free() it or realloc()

it to something bigger.
In the same way that allowing zero-byte allocations simplifies

boundary cases
of certain algorithms,
allowing impossibly thin bitmaps (and returning a

dummy handle)
may simplify certain graphical algorithms.

Note however that this behavior of returning the stock bitmap handle
when asked to create

an impossibly thin bitmap
does not apply to the CreateDIBSection function!
If you ask

CreateDIBSection for an impossibly thin
bitmap, it returns NULL .
So much for

consistency.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

