
1/4

April 14, 2010

When you create an object with constraints, you have to
make sure everybody who uses the object understands
those constraints

devblogs.microsoft.com/oldnewthing/20100414-00

Raymond Chen

Here’s a question that came from a customer.
This particular example involves managed

code,
but don’t let that distract you from the point of the exercise.

https://devblogs.microsoft.com/oldnewthing/20100414-00/?p=14333

2/4

I am trying to create a FileStream
object using the constructor that takes an IntPtr as
input.
In my .cs file,
I create the native file handle using CreateFile ,
as shown below.

[DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]

internal static extern IntPtr CreateFile(string lpFileName,

 int dwDesiredAccess, FileShare dwShareMode,

 IntPtr securityAttrs, FileMode dwCreationDisposition,

 UInt32 dwFlagsAndAttributes, IntPtr hTemplateFile);

IntPtr ptr1 = Win32Native.CreateFile(FileName, 0x40000000,

 System.IO.FileShare.Read | System.IO.FileShare.Write,

 Win32Native.NULL,

 System.IO.FileMode.Create,

 0xa0000000, // FILE_FLAG_NO_BUFFERING | FILE_FLAG_WRITE_THROUGH

 Win32Native.NULL);

Then I create the FileStream object as so:

FileStream fs = new FileStream(ptr1, FileAccess.Write, true, 1, false);

The fs gets created fine. But when I try to do:

fs.Write(msg, 0, msg.Length);

fs.Flush();

it fails with the error
“IO operation will not work.
Most likely the file will become too long
or
the handle was not opened to support synchronous IO operations.”

int hr = System.Runtime.InteropServices.Marshal.GetHRForException(e)

Gives hr as COR_E_IO (0x80131620).

The stack trace is as below.

System.IO.IOException: IO operation will not work. Most likely

 the file will become too long or the handle was not opened

 to support synchronous IO operations.

at System.IO.FileStream.WriteCore(Byte[] buffer, Int32 offset, Int32 count)

at System.IO.FileStream.FlushWrite()

at System.IO.FileStream.Flush()

at PInvoke.Program.Main(String[] args)

Can somebody point out what might be going wrong?

(For those who would prefer to cover their ears and hum when
the topic of managed code

arises,
change FileStream to
 fdopen .)

The comment on the line

 0xa0000000, // FILE_FLAG_NO_BUFFERING | FILE_FLAG_WRITE_THROUGH

3/4

was provided by the customer, and that’s the key to the problem.
It was right there in the

comment, but the customer didn’t understand
the consequences.

As the documentation for CreateFile notes,
the FILE_FLAG_NO_BUFFERING
flag requires

that all I/O operations on the file handle
be in multiples of the sector size, and that the I/O

buffers also
be aligned on addresses which are multiples of the sector size.

Since you created the file handle with very specific
rules for usage, you have to make sure

that everybody who
uses it actually follows those rules.
On the other hand,
the FileStream

object doesn’t know about these rules.
It just figures you gave it a handle that it can issue

normal
synchronous ReadFile and WriteFile
calls on.
It doesn’t know that you gave it a

handle that requires
special treatment.
And then the attempt to write to the handle with a

plain
 WriteFile fails both because the number
of bytes is not a multiple of the sector size

and because
the I/O buffer is not sector-aligned, and you get the
I/O exception.

The solution to this problem depends on what you are trying to accomplish.
Why are you

passing the
 FILE_FLAG_NO_BUFFERING |
FILE_FLAG_WRITE_THROUGH flags?
Are you doing

this just because you overheard in the hallway that it’s
faster?
Well, yes it may be faster under

the right circumstances,
but in exchange for the increased performance, you also have to

follow
a much stricter set of rules.
And in the absence of documentation to the contrary,
you

can’t assume that a chunk of code actually adheres to your
very special rules.

Like What if two people did this?,
this is an illustration of
another principle that many people

forget to consider
when working with objects they didn’t write:
When you write your own

code, do you do this?
It’s sort of like the Golden Rule of programming.

Suppose you have a function which accepts a file handle
and whose job is to write some data

do that file handle.
Do you write your function so that it performs all its
I/O in multiples of

the sector size from buffers which are
aligned in memory in multiples of the sector size,
on

the off chance that somebody gave you a handle that was
opened with the

FILE_FLAG_NO_BUFFERING flag?
Well, no, you don’t.
You just call WriteFile to write to

it,
and if you want to write 28 bytes, you write 28 bytes.
Even if you perform internal

buffering and your buffer size
happens to be a multiple of the sector size by accident,
you still

don’t align your I/O buffer to the sector size;
and when it’s time to flush the final partially-

written buffer,
you have a not-sector-multiple write at the very end anyway.

If you don’t handle this case in your code,
why would you expect others to handle it in their

code?

We’ve seen this principle before,
such as when we looked at
whether the Process.Refresh

method
refreshes an arbitrary application’s windows.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2008/11/28/9148951.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

