
1/1

March 19, 2010

How does delay-loading use binding information?
devblogs.microsoft.com/oldnewthing/20100319-00

Raymond Chen

In the documentation for delay-loading, there’s a remark that says that the call to

GetProcAddress can be avoided if there is binding information. A customer who received the

explanation of why you can’t delay-load kernel32 pointed out that paragraph and asked

whether this means that you can delay-load kernel32 if you bind to it. (Getting around to

answering this question was the point of the past few days.)
Let’s take another look at what

that GetProcAddress -avoidance optimization does. Actually, it’s just another look at what

the module loader does when it’s time to resolve imports to a bound DLL: At build time, the

actual function pointers are precomputed and cached, along with the timestamp of the DLL

those precomputed values came from. At run time, the delay-load stubs check the timestamp

of the target DLL and compare it against the timestamp that it had cached. If they are the

same, then they skip the call to GetProcAddress and use the cached value.
In other words,

the delay-load stubs use binding information in exactly the same way the module loader

does.
Does this mean that you can now delay-load kernel32 ?
No. First of all, if the

timestamps don’t match or if the target DLL was not loaded at its preferred address, then the

binding information is of no use—you have a cache miss. In that case, the module loader (and

the delay-load stubs) must obtain the function pointers the old-fashioned way. You can’t

assume that your binding information will always be accurate. (For example, after your

module was bound to kernel32 , there may have been a security update which modified

kernel32 , which invalidates your binding information.)

And besides, even if the binding information were used, you still have to call LoadLibrary

to get the target DLL loaded in the first place. Even though binding may have optimized away

one call to kernel32 , you still have that LoadLibrary to deal with.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20100319-00/?p=14553
http://msdn.microsoft.com/en-us/library/hdx9xk46.aspx
http://blogs.msdn.com/oldnewthing/archive/2010/02/01/9956102.aspx
http://blogs.msdn.com/oldnewthing/archive/2010/03/17/9980011.aspx
http://blogs.msdn.com/oldnewthing/archive/2010/03/18/9980802.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

