
1/3

March 18, 2010

What is DLL import binding?
devblogs.microsoft.com/oldnewthing/20100318-00

Raymond Chen

Last time, we saw how
hinting is used to speed up
the resolving of imported functions.

Today, we’ll look at binding.

Recall that the module loader resolves imports by locating the
function in the export table of

the linked-to DLL
and
recording the results in the loaded module’s table of
imported

function addresses
so that code from the module can jump indirectly through the table
and

reach the target function.

One of the consequences of this basic idea is that the table of
imported function addresses is

written to at module load time.
Writeable data in a module is stored in the form of copy-on-

write
pages.
Copy-on-write pages are a form of computer optimism:
“I’m going to assume

that nobody writes to this page,
so that I can share it among all copies of the DLL loaded
into

different processes”
(assuming other conditions are met,
not important to this discussion;

don’t make me bring back
the nitpicker’s corner).
“In this way, I can conserve memory,

leaving more memory available for other things.”
But once you write to the page,
that

assumption is proven false, and the memory manager needs
to make a private copy of the

page for your process.
If two processes load your DLL,
they each get their own copy of the

memory once they write to it,
and the opportunity to share the memory between the two

DLLs is lost.

What is particularly sad is when the copy-on-write page is forced
to be copied because two

processes wrote to the pages,
even if the processes wrote the same value.
Since the two pages

are now once again identical,
they could in principle be shared again.
(The memory manager

doesn’t do memcmp s of
every potentially-shared page each time you write to it,
on the off

chance that you happened to make two pages
coincidentally identical.
Once a copy-on-write

page is written to, the memory manager makes
the copy and says, “Oh well, it was good while

it lasted.”)

One of the cases where two processes both write to the page and
write the same value is when

they are resolving imports to the same
DLL.
In that case, the call to GetProcAddress will

return
the same value in both processes (assuming the target DLL is loaded
at the same base

https://devblogs.microsoft.com/oldnewthing/20100318-00/?p=14563
http://blogs.msdn.com/oldnewthing/archive/2010/03/17/9980011.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/07/20/672695.aspx

2/3

address in both processes),
and you are in the sad case where two processes dirty the page
by

writing the same value.

To make this sad case happy again, the module loader has an optimization
to avoid writing to

pages it doesn’t have to:
We pre-initialize the values in the table of
imported function

addresses to a prediction as to what the
actual address of the function will be.
Then we can

have the module loader compare the return value of
 GetProcAddress against the predicted

value,
and if they are the same, it skips the write.
In context diff format:

// error checking deleted since it's not relevant to the discussion

for (Index = 0; Index < NumberOfImportedFunctions; Index++) {

 FunctionPointer = GetProcAddress(hinst, ImportEntry[Index]);

- TableEntry[Index] = FunctionPointer;

+ if (TableEntry[Index] != FunctionPointer)

+ TableEntry[Index] = FunctionPointer;

}

But wait, we can optimize this even more.
How about avoiding the entire loop?
This saves us

the trouble of having to call GetProcAddress
in the first place.

There is an extra field in the import descriptor table entry called
 TimeDateStamp which

records the timestamp of the
DLL from which the precomputed function pointer values were

obtained.
Every DLL has a timestamp, recorded in the module header information.
(The

format of this timestamp is in
seconds since January 1, 1970,
commonly known as unix time

format.)
Before the module loader resolves imported functions,
it compares the timestamp in

the import descriptor table entry
against the timestamp in the actual DLL that got loaded.
If

they match (and if the actual DLL was loaded at its preferred
base address),
then the module

loader skips the loop entirely:
All the precomputed values are correct.

That’s the classical model for binding.
There have been some changes since the original

implementation,
but they don’t change the underlying principle:
Precompute the answers

and associate them with a key which lets
you determine whether the information against

which the values were
precomputed matches the information that you actually have.

Binding therefore is a performance optimization to address both
wall-clock running time
(by

reducing the amount of computation performed at
module load time)
and memory

consumption
(by reducing the number of copy-on-write pages actually written to).

Exercise:
Why is the timestamp stored in the module header?
Why not just use the actual

file last-modified time?

Exercise:
When you rebase a DLL, does it update the timestamp?

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2003/09/05/54806.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

