
1/4

February 15, 2010

Private classes, superclassing, and global subclassing
devblogs.microsoft.com/oldnewthing/20100215-00

Raymond Chen

In the suggestion box,
A. Skrobov
asks
why it’s impossible to superclass WC_DIALOG,
but the

example that follows is not actually superclassing.

When I register my own class under this atom,
and leave NULL in WNDCLASS.hInstance,
Windows fills it in for me.
Then I have two distinct classes registered:
(0,WC_DIALOG) and
(hMyInstance,WC_DIALOG),
and DialogBox functions all use the first one.

This question is a bit confused,
since it says that the goal is to superclass the dialog class,
but

registering WC_DIALOG is not superclassing.

First, I’ll refer everyone to
this MSDN article which describes the various ways of

manipulating a window class:
Subclassing, superclassing, and global subclassing.

To superclass the dialog class, you retrieve information
about the class by calling

GetClassInfo
and then register a new class based on the original
class.
But you don’t need

to go to all that effort to superclass
the dialog class,
because you already know what you need

to know:
The number of extra bytes is DLGWINDOWEXTRA ,
and the dialog procedure is

DefDlgProc .
You can just
register your superclass directly,
as we saw last time.

Superclassing is done by registering your custom class under
a different name, and using that

class name if you want to obtain
the new behavior.
On the other hand, the question about

talks about registering
a class under the same name as the original (namely, WC_DIALOG).

This isn’t subclassing, nor is it superclassing,
nor is it even global subclassing.

Before continuing the discussion, I’ll first address the
issue of leaving NULL in

WNDCLASS.hInstance :
The value NULL for the instance handle
is not legal when

registering a class.
Each class is associated with a module instance,
and NULL is not a

module instance.
The window manager autocorrects this mistake by registering
the class

under the module corresponding to the executable.
This is the same special-case behavior

you get if you call
 GetModuleHandle(NULL) ,
so it’s not something completely out of the

blue.
It looks like A. Skrobov is being confused by
the window manager’s attempt to do what

you mean.
So much for being helpful.

https://devblogs.microsoft.com/oldnewthing/20100215-00/?p=14943
http://cs.usu.edu.ru/home/skrobov/
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#769058
http://msdn.microsoft.com/en-us/library/ms997565.aspx
http://blogs.msdn.com/oldnewthing/archive/2003/11/13/55662.aspx

2/4

Okay, back to the original problem.
Recall that
the HINSTANCE member of the
WNDCLASS

structure
is used to specify the class namespace.
If you register a class against the handle of

the current
executable, then in order to create a window with that class,
you need to create it

with that same instance handle.

Now we can put all the pieces together:
Registering the class with WNDCLASS.hInstance =

NULL
is autocorrected to registering it with
 WNDCLASS.hInstance =

GetModuleHandle(NULL) ,
which places the class in the window class namespace of
the

current module.
This is a separate class from the system dialog class,
which is registered

against GetModuleHandle(TEXT("USER32")) .
The two are registered against different

modules,
so they live independent lives.
They just happen to have
the same name.

As we learned a few years ago,
the instance handle you pass to the CreateWindow (or

related) function
is used to look up the window class,
and as we also learned,
the

HINSTANCE you pass to the DialogBox
(or related) function
is used to look up the

template
as well as to
create the frame window.
The class name comes from the template,

and if you didn’t
specify an explicit class in your template,
then the dialog manager will use

WC_DIALOG .

You now have all the pieces necessary to understand what is going on.
When you register the

class against your executable’s instance,
you need to use that same instance when creating

the dialog box
so that your private class is found instead of the global one.

To show how this all fits together,
I’ve written a little program which registers a private class

which happens to have the name WC_DIALOG
and then uses it to create a dialog box.

http://blogs.msdn.com/oldnewthing/archive/2005/04/18/409205.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/10/21/9008384.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/04/18/409205.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/03/29/403298.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/03/30/403711.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/06/21/161375.aspx

3/4

// scratch.rc

#include <windows.h>

// A pointless dialog box, for illustration only

1 DIALOG 0,0,150,50

STYLE DS_MODALFRAME | DS_SHELLFONT | WS_POPUP | WS_VISIBLE |

 WS_CAPTION | WS_SYSMENU

CAPTION "Pointless"

FONT 8, "MS Shell Dlg"

BEGIN

 DEFPUSHBUTTON "Cancel",IDCANCEL,50,18,50,14

END

// scratch.cpp

#include <windows.h>

LRESULT CALLBACK

SuperDlgProc(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uiMsg) {

 case WM_ERASEBKGND:

 return DefWindowProc(hwnd, uiMsg, wParam, lParam);

 }

 return DefDlgProc(hwnd, uiMsg, wParam, lParam);

}

INT_PTR CALLBACK

DlgProc(HWND hwnd, UINT wm, WPARAM wParam, LPARAM lParam)

{

 switch (wm) {

 case WM_INITDIALOG: return TRUE;

 case WM_CLOSE: EndDialog(hwnd, 0); return TRUE;

 }

 return FALSE;

}

int CALLBACK

WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR pszCmdLine, int nShowCmd)

{

 WNDCLASS wc;

 wc.style = 0;

 wc.lpfnWndProc = SuperDlgProc;

 wc.cbClsExtra = 0;

 wc.cbWndExtra = DLGWINDOWEXTRA;

 wc.hInstance = hinst;

 wc.hIcon = NULL;

 wc.hCursor = LoadCursor(NULL, IDC_ARROW);

 wc.hbrBackground = (HBRUSH)(COLOR_INFOBK + 1);

 wc.lpszMenuName = NULL;

 wc.lpszClassName = WC_DIALOG;

 if (RegisterClass(&wc))

 DialogBox(hinst, MAKEINTRESOURCE(1), NULL, DlgProc);

 return 0;

}

The dialog template is itself entirely unremarkable;
it looks like any old dialog template.

4/4

Our superclass takes the regular dialog box class and
gives it a custom background color,

namely COLOR_INFOBK .

The program registers this private version of WC_DIALOG
and creates a dialog box based on

it.
Since we passed the same HINSTANCE in the
 WNDCLASS.hInstance as we did to

DialogBox ,
the lookup of the WC_DIALOG class will
find our private version and use it

instead of the global version.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

