
1/3

January 11, 2010

Why aren't compatibility workarounds disabled when a
debugger is attached?

devblogs.microsoft.com/oldnewthing/20100111-00

Raymond Chen

Ken Hagan wonders
why compatibility workarounds aren’t simply disabled when
a debugger

is attached.

As I noted earlier,
many compatibility workarounds are actually quicker than the code
that

detects whether the workaround would be needed.

BOOL IsZoomed(HWND hwnd)

{

 return GetWindowLong(hwnd, GWL_STYLE) & WS_MAXIMIZED;

}

Now suppose you find a compatibility problem with some applications
that expect the

IsZoomed function to return exactly
 TRUE or FALSE .
You then change the function to

something like this:

BOOL IsZoomed(HWND hwnd)

{

 return (GetWindowLong(hwnd, GWL_STYLE) & WS_MAXIMIZED) != 0;

}

Now, we add code to enable the compatibility workaround only if
the application is on the list

of known applications which need
this workaround:

BOOL IsZoomed(HWND hwnd)

{

 if (GetWindowLong(hwnd, GWL_STYLE) & WS_MAXIMIZED) {

 if (IsApplicationCompatibilityWorkaroundRequired(ISZOOMED_TRUEFALSE)) {

 return TRUE;

 } else {

 return WS_MAXIMIZED;

 }

 } else {

 return FALSE;

 }

}

https://devblogs.microsoft.com/oldnewthing/20100111-00/?p=15333
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#751847

2/3

What was a simple flag test now includes a check to see whether
an application compatibility

workaround is required.
These checks are not cheap, because the compatibility infrastructure

needs to look up the currently-running application in the compatibility
database, check that

the version of the application that is running
is the one the compatibility workaround is

needed for
(which could involve reading the file version resource or
looking for other

identifying clues),
and then returning either the compatible answer (TRUE)
or the answer

that resulted from the original simple one-line
function.

So not only is the function slower
(having to do a compatibility check),
it also looks really

stupid.

Oh wait, now we also have to stick in a debugger check:

BOOL IsZoomed(HWND hwnd)

{

 if (GetWindowLong(hwnd, GWL_STYLE) & WS_MAXIMIZED) {

 if (!IsDebuggerPresent() &&

 IsApplicationCompatibilityWorkaroundRequired(ISZOOMED_TRUEFALSE)) {

 return TRUE;

 } else {

 return WS_MAXIMIZED;

 }

 } else {

 return FALSE;

 }

}

And then people complain that Windows is slow and bloated:
A simple one-line function

ballooned into ten lines.

Another reason why these compatibility workarounds are left
intact when a debugger is

running is that changing program
behavior based on whether a debugger is attached would

prevent
application
vendors from debugging one problem because all sorts of new problems

suddenly got injected.

Suppose you support Program X, and you get a report of
a security vulnerability in your

program.
You run the program under the debugger,
and when you run the alleged exploit

code,
you find that the program doesn’t behave the same as it does
when the debugger is not

attached.
Some compatibility workaround that was active when your program
is run

normally is being suppressed, and the change in behavior
changes your program enough that

the alleged security exploit
doesn’t behave quite the same.

When run outside the debugger, the program crashes,
but when run under the debugger, the

program displays a strange
error message but manages to keep from crashing.

Congratulations, you introduced a Heisenbug.

3/3

And then you say, “There’s something wrong with the debugger.
It must be a bug in

Windows.”

Pre-emptive Yuhong Bao comment:
The heap manager
switches to an alternate

algorithm if it
detects a debugger,
and the
 CloseHandle function
raises an exception if

running under the debugger.

Raymond Chen

Follow

http://msdn.microsoft.com/cc266414.aspx
http://msdn.microsoft.com/ms724211.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

