
1/2

January 6, 2010

Can you get rotating an array to run faster than O(n²)?
devblogs.microsoft.com/oldnewthing/20100106-00

Raymond Chen

Some follow-up remarks to my old posting on
rotating a two-dimensional array:

Some people noticed that the article I linked to purporting to rotate
the array actually

transposes it.
I was wondering how many people would pick up on that.

I was surprised that people confused
rotating an array (or matrix) with creating a rotation

matrix.
They are unrelated operations;
the only thing they have in common are the letters r-

o-t-a-t-i.
A matrix is a representation of a linear transformation,
and
a rotation matrix is a

linear transformation which rotates vectors.
In other words, applying the rotation matrix to a

vector produces
a new vector which is a rotated version of the original vector.
The linear

transformation is a function of one parameter:
It takes a vector and produces a new vector.
A

rotation matrix is a matrix which rotates other things.
Whereas rotating an array is

something you do to the array.
The array is the thing being rotated, not the thing doing the

rotating.
It didn’t even occur to me that people would confuse the two.
It’s the difference a

phone dial and dialing a phone.

Showing that you cannot rotate an array via matrix multiplication
is straightforward.

Suppose there were a matrix R which rotated an array (laid
out in the form of a matrix)

clockwise.
The result of rotating the identity matrix would be a
a matrix with 1’s along the

diagonal
from upper right to lower left, let’s call that matrix J.
Then we have RI = J, and

therefore R = J.
Now apply R to both sides:
RRI = RJ = I
and therefore R² = I.
But clearly

rotating clockwise twice is not the identity
for n ≥ 2.
(Rotating clockwise twice is turning

upside-down.)

A more mechanical way to see this is to take the equation
R = J and show that J
does not

perform the desired operation;
just try it on the matrix with 1 in the upper left entry and 0’s

everywhere
else.

And since it’s one of those geeky math pastimes to see
how many differents proofs you can

come up with for a single result,
the third way to show that rotation cannot be effected by

matrix multiplication is to observe that the transformation is not linear.
(That’s the magical

algebra-theoretical way of showing it,
which is either so obvious you can tell just by looking

https://devblogs.microsoft.com/oldnewthing/20100106-00/?p=15383
http://blogs.msdn.com/oldnewthing/archive/2008/09/02/8918130.aspx
http://blogs.msdn.com/matthew_van_eerde/archive/2008/09/12/rotating-a-matrix-redux.aspx

2/2

at it
or
so obscure it defies comprehension.)
[The transformation viewed as a transformation

on matrices rather
than a transformation on column vectors is indeed linear,
but the matrix

for that would be an n² × n²
matrix, and the operation wouldn’t be matrix multiplication,
so

that doesn’t help us here.]

The last question raised by this exercise was
whether you could do better than O(n²).

Computer science students spend so much time trying to push the
complexity of an algorithm

down
that they neglect to learn how to tell that you can’t go any lower.
In this case, you

obviously can’t do better than O(n²)
because every single one of the n² entries in the array

needs to move (except of course the center element if n is odd).
If you did less than O(n²) of

work,
then for sufficiently large n,
you will end up not moving some array elements, which

would be a failure
to complete the required operation.

Bonus chatter:
Mind you, you can do better than
O(n²) if you change the rules of the

problem.
For example, if you allow pretending to move the elements,
say by overloading the

[] operator,
then you can perform the rotation in
O(1) time by just writing a wrapper:

struct IArray

{

 virtual int& Element(int x, int y) = 0;

 virtual ~IArray() = 0;

};
class RotatedArray : public IArray {

public:

RotatedArray(IArray *p) : m_p(p) { }

~RotatedArray() { delete m_p; }

int& Element(int x, int y) {

 return m_p->Element(y, x);

}
private:

IArray *m_p;

};
void RotateInPlace(IArray *& p, int N)

{

p = new RotatedArray(p);

}

This pseudo-rotates the elements by changing the accessor.
Cute but doesn’t actually address

the original problem,
which said that you were passed an array, not an interface
that

simulates an array.

Raymond Chen

Follow

http://beta.stackoverflow.com/questions/42519/how-do-you-rotate-a-two-dimensional-array
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

