
1/3

November 6, 2009

Signs that the symbols in your stack trace are wrong
devblogs.microsoft.com/oldnewthing/20091106-00

Raymond Chen

One of the things programmers send to each other when they are trying to collaborate on a

debugging problem is stack traces. Usually something along the lines of “My program does X,

then Y, then Z, and then it crashes. Here is a stack trace. Can you tell me what’s wrong?”

It helps if you at least glance at the stack trace before you send it, because there are often

signs that the stack trace you’re about to send is completely useless because the symbols are

wrong. Here’s an example:

https://devblogs.microsoft.com/oldnewthing/20091106-00/?p=16123

2/3

We are testing our program and it gradually grinds to a halt. When we connect a debugger, we
find that all of our threads, no matter what they are doing, eventually wind up hung in
kernel32!EnumResourceLanguagesA . Can someone explain why that function is

hanging, and why it seems all roads lead to it?

 0 Id: 12a4.1468 Suspend: 1 Teb: 000006fb`fffdc000 Unfrozen
kernel32!EnumResourceLanguagesA+0xbea00
kernel32!EnumResourceLanguagesA+0x2b480
bogosoft!CObjMarker::RequestBlockForFetch+0xf0
...
 1 Id: 12a4.1370 Suspend: 1 Teb: 000006fb`fffda000 Unfrozen
kernel32!EnumResourceLanguagesA+0xbea00
kernel32!EnumResourceLanguagesA+0x2b480
bsnetlib!CSubsystem::CancelMain+0x90
 2 Id: 12a4.1230 Suspend: 1 Teb: 000006fb`fffd8000 Unfrozen
NETAPI32!I_NetGetDCList+0x117e0
kernel32!EnumResourceLanguagesA+0x393a0
ntdll!LdrResFindResource+0x58b20
...
 3 Id: 12a4.cc0 Suspend: 1 Teb: 000006fb`fffd6000 Unfrozen
kernel32!EnumResourceLanguagesA+0xa80
bsnetlib!BSFAsyncWait+0x190
...
 4 Id: 12a4.1208 Suspend: 1 Teb: 000006fb`fffd4000 Unfrozen
kernel32!EnumResourceLanguagesA+0xbea00
kernel32!EnumResourceLanguagesA+0x2b480
bogosoft!TObjList<DistObj>::Get+0xb0
 5 Id: 12a4.1538 Suspend: 1 Teb: 000006fb`fffae000 Unfrozen
kernel32!EnumResourceLanguagesA+0xbf3d0
kernel32!EnumResourceLanguagesA+0x2c800
bsnetlib!Tcp::ReadSync+0x340
...
 6 Id: 12a4.16e0 Suspend: 1 Teb: 000006fb`fffac000 Unfrozen
ntdll!LdrResFindResource+0x61808
ntdll!LdrResFindResource+0x1822a0
kernel32!EnumResourceLanguagesA+0x393a0
ntdll!LdrResFindResource+0x58b20
...

This stack trace looks suspicious for a variety of reasons.

First of all, look at that offset EnumResourceLanguagesA+0xbea00 . It’s unlikely that the

EnumResourceLanguagesA function (or any other function) is over 750KB in size, as this

offset suggests.

Second, it’s unlikely that the EnumResourceLanguagesA function (or any other function,

aside from obvious cases like tree walking) is recursive. And it’s certainly unlikely that a huge

function will also be recursive.

3/3

Third, it seems unlikely that the EnumResourceLanguagesA function would call,

NETAPI32!I_NetGetDCList . What does enumerating resource languages have to do with

getting a DC list?

Fourth, look at those functions that are allegedly callers of EnumResourceLanguagesA :

bogosoft!CObjMarker::RequestBlockForFetch ,

bsnetlib!CSubsystem::CancelMain , bsnetlib!Tcp::ReadSync . Why would any of

these functions want to enumerate resource languages?

These symbols are obvious wrong. The huge offsets are present because the debugger has

access only to exported functions, and it’s merely showing you the name of the nearest

symbol, even though it has nothing to do with the actual function. It’s just using the nearest

signpost it can come up with. It’s like if somebody gave you directions to the movie theater

like this: “Go to city hall downtown and then go north for 35 miles.” This doesn’t mean that

the movie theater is in the downtown district or that the downtown district is 35 miles long.

It’s just that the person who’s giving you directions can’t come up with a better landmark

than city hall.

This is just another case of the principle that you have to know what’s right before you can

see what’s wrong. If you have no experience with good stack traces, you don’t know how to

recognize a bad one.

Oh, and even though the functions in question are in kernel32 , you can still get symbols

for that DLL with the help of the Microsoft Symbol Server.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2006/07/10/661389.aspx
http://support.microsoft.com/kb/311503
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

