
1/2

August 31, 2009

Why do new controls tend to use COM instead of window
messages?

devblogs.microsoft.com/oldnewthing/20090831-00

Raymond Chen

Commenter David wonders
why new controls tend to use COM instead of window messages.

“It seems
that there must have been a decision to only
develop COM controls after the

invention of COM.”

There have been plenty of Win32 controls invented after the invention
of COM.
In fact, the

entire common controls library was developed after
the invention of COM.
All your old

friends like the list view,
tree view, and property sheets are good old Win32 controls.
But it’s

true that the newer stuff tends to use COM.
Why is that?

I am not aware of any grand pronouncement on this subject.
Each team makes a decision

that they feel is best for their customers.
But if you think about it,
it’s not an unreasonable

choice:
Suppose you were writing a new C++ object.
Would you prefer to use this:

class Thing {

public:

 enum MESSAGENUMBER {

 MESSAGE_INSERTITEM,

 MESSAGE_DELETEITEM,

 MESSAGE_DELETEALLITEMS,

 MESSAGE_SETLABELTEXT,

 MESSAGE_GETNEXTITEM,

 MESSAGE_ADDBITMAP,

 ...

 };

 LRESULT Message(MESSAGENUMBER m, WPARAM wParam, lPARAM lParam);

private:

 ...

};

or would you rather use this:

https://devblogs.microsoft.com/oldnewthing/20090831-00/?p=16923
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#649857


2/2

class Thing {

public:

 BOOL InsertItem(Item *item, Item *itemParent, Item *itemInsertAfter);

 BOOL DeleteItem(Item *item);

 BOOL DeleteAllItems();

 BOOL SetLabelText(Item *item, PCWSTR pszText);

 Item *GetNextItem(Item *item);

 BOOL AddBitmap(HINSTANCE hinst, PCWSTR pszResource, COLORREF crTransparent);

 ...

private:

 ...

};

It’s just less of a hassle using separate member functions,
where you don’t have to try
to pack

all your parameters into two parameters (cryptically named
WPARAM and LPARAM)
on the

sending side,
and then unpack the parameters on the window procedure side.

The overhead of sending a message can add up for high-traffic messages.
A C++ method call

is pretty direct: You set up the parameters and call
the method.
Whereas when you send a

window message,
it bounces around inside the window manager
until it magically pops out

the other side.

Again, these are my personal remarks and are not the official
position of Microsoft on

anything.
But if you were writing a control, which would you prefer to have
to implement?

And if you were using a control, which interface would you rather use?

(That said,
I can’t think of many common controls that are COM-based.
All the ones I know

about still use boring window messages.)

Raymond Chen

Follow







http://blogs.msdn.com/oldnewthing/archive/2003/11/25/55850.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

