
1/1

January 12, 2009

How does PostQuitMessage know which thread to post
the quit message to?

devblogs.microsoft.com/oldnewthing/20090112-00

Raymond Chen

Commenter bav016 asks how functions like PostQuitMessage and SetTimer(NULL) know

which thread the messages should go to. Unlike some functions such as InvalidateRect

which have a window handle parameter that lets you say which window you want to operate

on, PostQuitMessage and SetTimer(NULL) don’t say which thread the WM_QUIT or

WM_TIMER message should go to. How do they decide?

The messages go to the current thread; that is, they are delivered to the thread that called the

function in the first place.

There are many functions which operate on an implicit message queue, and those cases, they

operate on the message queue associated with the thread making the call. If you call

GetKeyState you retrieve the calling thread’s keyboard state. If you call GetMessage you

retrieve messages from the calling thread’s message queue. If you call InSendMessage , you

are told about the calling thread’s message processing state. If you call GetQueueStatus

you retrieve information about the calling thread’s msesage queue. You get the idea.

If you want these functions to operate on a thread different from the one that is executing,

you’ll have to ask that thread to make the call for you.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20090112-00/?p=19533
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#534733
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

