
1/3

November 26, 2008

The cost-benefit analysis of bitfields for a collection of
booleans

devblogs.microsoft.com/oldnewthing/20081126-00

Raymond Chen

Consider a class with
a bunch of BOOL members:

// no nitpicking over BOOL vs bool allowed

class Pear {

…
BOOL m_peeled;

BOOL m_sliced;

BOOL m_pitted;

BOOL m_rotten;

…
};

You might be tempted to convert the BOOL fields
into bitfields:

class Pear {

…
BOOL m_peeled:1;

BOOL m_sliced:1;

BOOL m_pitted:1;

BOOL m_rotten:1;

…
};

Since a BOOL is typedef’d as INT (which on
Windows platforms is a signed 32-bit integer),

this takes sixteen bytes and packs them into one.
That’s a 93% savings!
Who could complain

about that?

How much did that savings cost you, and how much did you save anyway?

Let’s look at the cost of that savings.
Code that updated the plain BOOL
 m_sliced member

could do it by simply storing the result
into the member.
Since it was a normal field,
this

could be accomplished directly:

 mov [ebx+01Ch], eax ; m_sliced = sliced

On the other hand, when it’s a bitfield, updating it becomes trickier:

https://devblogs.microsoft.com/oldnewthing/20081126-00/?p=20073

2/3

 add eax, eax ; shift “sliced” into the correct position

 xor eax, [ebx+01Ch] ; merge “sliced” with other bits

 and eax, 2

 xor [ebx+01Ch], eax ; store the new bitfield

Exercise: Figure out how the above trick works.

Converting a BOOL to a single-bit field saved three bytes
of data but cost you eight bytes of

code when the member is assigned
a non-constant value.
Similarly, extracting the value gets

more expensive.
What used to be

push [ebx+01Ch] ; m_sliced

call _Something@4 ; Something(m_sliced);

becomes

mov ecx, [ebx+01Ch] ; load bitfield value

shl ecx, 30 ; put bit at top

sar ecx, 31 ; move down and sign extend

push ecx

call _Something@4 ; Something(m_sliced);

The bitfield version is bigger by nine bytes.

Let’s sit down and do some arithmetic.
Suppose each of these bitfielded fields is accessed six

times
in your code, three times for writing and three times for reading.
The cost in code

growth is approximately 100 bytes.
It won’t be exactly 102 bytes because the optimizer may

be able
to take advantage of values already in registers for some operations,
and the

additional instructions may have hidden costs in terms of
reduced register flexibility.
The

actual difference may be more, it may be less, but for a
back-of-the-envelope calculation let’s

call it 100.
Meanwhile,
the memory savings was 15 byte per class.
Therefore, the breakeven

point is seven.
If your program creates fewer than seven instances of this class,
then the code

cost exceeds the data savings: Your memory optimization
was a memory de-optimization.

Even if you manage to come out ahead in the accounting ledger,
it may be a win of just a few

hundred bytes.
That’s an awful lot of extra hassle to save a few hundred bytes.
All somebody

has to do is add an icon to a dialog box and your
savings will vanish.

When I see people making these sorts of
micro-optimizations,
sometimes I’ll ask them,
“How

many instances of this class does the program create?”
and sometimes the response will be,

“Oh, maybe a half dozen. Why do you ask?”

But wait, there’s more.
Packing all these members into a bitfield has other costs.
You lose the

ability to set a hardware write breakpoint on a specific bit,
since hardware breakpoints are

done at the byte level (at a minimum).
You also lose atomicity:
An update to m_sliced will

interfere with a simultaneous
update to m_peeled on another thread,
since the update

process merges the two values and stores the result
non-atomically.
(Note that you also lose

http://blogs.msdn.com/tonyschr/archive/2006/01/24/517088.aspx

3/3

atomicity if you had used a byte-sized
 bool instead of a 32-bit BOOL because some CPU

architectures such as the original Alpha AXP cannot access memory
in units smaller than a

DWORD .)

These are just a few things to take into account when considering
whether you should change

your fields to bitfields.
Sure, bitfields save data memory, but you have to balance it
against

the cost in code size, debuggability, and reduced multithreading.
If your class is going to be

instantiated only a few times
(and by “a few” I’m thinking less than a few thousand times),

then these costs most likely exceed the savings.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

