
1/2

October 16, 2008

Psychic debugging: Why your thread is spending all its
time processing meaningless thread timers

devblogs.microsoft.com/oldnewthing/20081016-00

Raymond Chen

I was looking at one of those “my program is consuming 100% of the CPU and I don’t know

why” bugs, and upon closer investigation, the proximate reason the program was consuming

100% CPU was that one of the threads was being bombarded with WM_TIMER messages

where the MSG.hWnd is NULL . The program was dispatching them as fast as it could, but

the messages just kept on coming. Curiously, the LPARAM for these messages was zero.

This should be enough information for you to figure out what is going on.

First, you should refresh your memory as to what a null window handle in a WM_TIMER

message means: These are thread timers, timers which are associated not with a window but

with a thread. You create a thread timer by calling the SetTimer function and passing

NULL as the window handle. Thread timer messages arrive in the message queue, and the

DispatchMessage function calls the timer procedure specified by the message LPARAM . If

the LPARAM of a thread timer message is zero, then dispatching the message consists merely

of throwing it away. (If there were a window handle, then the message would be delivered to

the window procedure, but there isn’t one, so there’s nothing else that can be done.)

The program was spending all its time retrieving WM_TIMER messages from its queue and

throwing them away. The real question is how all these thread timers ended up on the thread

when they don’t do anything. Who would create a timer that didn’t do anything? And who

would create dozens of them?

One of the more common patterns for creating a window timer is to write SetTimer(hwnd,

idTimer, dwTimeout, NULL) . This creates a window timer whose identifier is idTimer .

Since the timer procedure is NULL , the WM_TIMER message is dispatched to the window

procedure, which in turn will have a case WM_TIMER statement followed by a switch

(wParam) to handle the timer message.

But what if hwnd is NULL , say because you forgot to check the return value of a function

like CreateWindow ? Well, then you just created a thread timer by mistake. And if you make

this mistake several times in a row, you’ve just created several thread timers. Now you might

https://devblogs.microsoft.com/oldnewthing/20081016-00/?p=20543

2/2

think that the code that created the thread timer by mistake will also destroy the thread timer

by mistake when it finally gets around to calling KillTimer(hwnd, idTimer) and passes

NULL for the hwnd . But it doesn’t.

One reason is that in many cases, it’s the timer that turns itself off. In other words, the

KillTimer happens inside the WM_TIMER message handler. But if the WM_TIMER message

isn’t associated with that window, then that window procedure never gets a chance to turn off

the timer.

Another reason is more insidious. Recall that the idTimer parameter to the SetTimer

function is ignored when you create a thread timer. Since you can’t predict what other thread

timers may exist, you can’t know which timer identifiers are in use and which are free.

Instead, the SetTimer function creates a unique thread timer identifier and returns it, and

it is that timer identifier you must use when destroying the thread timer. Of course, the code

that accidentally created the thread timer thought it was creating a window timer (which uses

the timer identifier you specify), so it didn’t bother saving the return value. Result: Thread

timer is created and becomes orphaned.

The machine I was asked to look at was running a stress scenario, so it was entirely likely that

a low memory condition caused a function like CreateWindow to fail, and the program most

likely neglected to check the return value. I never did hear back to find out if that indeed was

the source of the problem, but seeing as they didn’t come back for more help, I suspect I put

them on the right track.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

