
1/3

October 6, 2008

Eventually, nothing is special any more
devblogs.microsoft.com/oldnewthing/20081006-00

Raymond Chen

Commenter ulric suggested that two functions for obtaining the “current” window should

exist, one for normal everyday use and one for “special use” when you want to interact with

windows outside your process.

I’d be more at ease however if the default behaviour of the API was to return HWND for the
current process only, and the apps that really need HWND from other potentially other
processes would have to be forced to use another API that is specifically just for that.

This is an excellent example of suggesting something that Windows already does. The special

function has become so non-special, you don’t even realize any more that it’s special.

Originally, in 16-bit Windows, the function for getting the “current” window was

GetActiveWindow . This obtained the active window across the entire system. One of the

major changes in Win32 is the asynchronous input model, wherein windows from different

input queues receive separate input. That way, one program that has stopped responding to

input doesn’t clog up input for other unrelated windows. Win32 changed the meaning of

GetActiveWindow to mean the active window from the current input queue.

In 16-bit Windows, there was only one input queue, the global one. In 32-bit Windows, each

thread (or group of input-attached threads) gets its own input queue.

As a result of this finer granularity, when a program was ported from 16-bit Windows to 32-

bit Windows, it didn’t “see” windows from other programs when it called functions like

GetFocus or GetActiveWindow . As every Win32 programmer should know, these states

are local to your input queue.

Okay, let’s look at what we’ve got now. GetFocus and GetActiveWindow give you the

status of your input queue. In other words, in a single-threaded program (which, if you’re

coming from 16-bit Windows, is the only type of program there is), calling

GetActiveWindow gives you the active window from your program. It doesn’t return the

active window from another program.¹ Things are exactly as ulric suggested!

https://devblogs.microsoft.com/oldnewthing/20081006-00/?p=20643
http://blogs.msdn.com/oldnewthing/archive/2007/07/27/4072156.aspx#4112818
http://blogs.msdn.com/oldnewthing/archive/2007/04/03/2014992.aspx#2035078
https://channel9.msdn.com/Showpost.aspx?postid=116704

2/3

Now let’s look at the second half of the suggestion. If a program really needs to get a window

from potentially other processes, it would have to use some other function that is specifically

just for that. And indeed, that’s why the GetForegroundWindow function was added. The

GetForegroundWindow function is the special function specifically designed for obtaining

windows from other processes.

Therefore, we did exactly what ulric recommended, and it still turned into a mess. Why?

Because once you create something special, it doesn’t remain special for long.

It may take a while, but eventually people find that the regular function “doesn’t work” (for

various definitions of “work”), and they ask around for help. “When I call

GetActiveWindow , I’m not getting the global active window; I’m just getting the local one.

How do I get the global one?” Actually, they probably don’t even formulate the question that

clearly. It’s probably more like “I want to get the active window, but GetActiveWindow

doesn’t work.”

And then somebody responds with “Yeah, GetActiveWindow doesn’t work. I’ve found that

GetForegroundWindow works a lot better.”

The response is then “Wow, that works great! Thanks!”

Eventually, the word on the street is “ GetActiveWindow doesn’t work. Use

GetForegroundWindow instead.” Soon, people are using it for everything, waxing their car,

calming a colicky baby, or improving their sexual attractiveness.

What used to be a function to be used “only in those rare occasions when you really need it”

has become “the go-to function that gets the job done.”

In fact, the unfashionableness of the active window has reached the point that people have

given up on calling it the active window at all! Instead, they call it the foreground window

from the current process. It’s like calling a land line a “wired cell phone”.

Requiring a new flag to get the special behavior doesn’t change things at all. It’s the same

story, just with different names for the characters. “ GetFocalWindow ² doesn’t work unless

you pass the GFW_CROSSPROCESS flag.” Soon, everybody will be passing the

GFW_CROSSPROCESS not because they understand what it does but just because “That’s what

I was told to do” and “It doesn’t work if I don’t pass it.”

Footnotes

¹Assuming you haven’t run around attaching your thread to some other program’s input

queue. This is a pretty safe assumption since the AttachThreadInput function didn’t exist

in 16-bit Windows either.

http://blogs.msdn.com/oldnewthing/archive/2008/09/22/8960761.aspx#8961210
http://blogs.msdn.com/oldnewthing/archive/2007/07/27/4072156.aspx#4133892

3/3

² GetFocalWindow is an imaginary function created for the purpose of the example.

[Raymond is currently away; this message was pre-recorded.]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

