
1/2

October 3, 2008

Acquire and release sound like bass fishing terms, but
they also apply to memory models

devblogs.microsoft.com/oldnewthing/20081003-00

Raymond Chen

Many of the normal interlocked operations
come with variants called

InterlockedXxxAcquire and InterlockedXxxRelease .
What do the terms Acquire

and
 Release mean here?

They have to do with the memory model and how aggressively
the CPU can reorder

operations around it.

An operation with acquire semantics is one which does not
permit subsequent memory

operations to be advanced before it.
Conversely,
an operation with release semantics is one

which does not
permit preceding memory operations to be delayed past it.
(This is pretty

much the same thing that
MSDN says on the subject of Acquire and Release Semantics.)

Consider the following code fragment:

int adjustment = CalculateAdjustment();

while (InterlockedCompareExchangeAcquire(&lock, 1, 0) != 0)

 { /* spin lock */ }

for (Node *node = ListHead; node; node = node->Next)

 node->value += adjustment;

InterlockedExchangeRelease(&lock, 0);

Applying Acquire semantics to the first operation
operation ensures that the operations on

the linked list
are performed
only after the lock variable
has been updated.
This is

obviously desired here, since the purpose of the
updating the lock variable is ensure that

no other threads are updating the list while we’re walking it.
Only after we have successfully

set the lock to 1
is it safe to read from ListHead .
On the other hand,
the Acquire operation

imposes no constraints upon when
the store to the adjustment variable can be
completed

to memory.
(Of course, there may very well be
other constraints on the adjustment

variable,
but the Acquire does not add any new constraints.)

Conversely, Release semantics for an interlocked
operation prevent pending memory

operations from being delayed
past the operation.
In our example, this means that the stores

to
 node->value must all complete
before the interlocked variable’s value changes
back to

https://devblogs.microsoft.com/oldnewthing/20081003-00/?p=20663
http://msdn.microsoft.com/en-us/library/aa490209.aspx

2/2

zero.
This is also desired, because the purpose of the lock
is to control access to the linked

list.
If we had completed the stores after the lock was released,
then somebody else could

have snuck in, taken the lock,
and, say, deleted an entry from the linked list.
And then when

our pending writes completed, they would end up
writing to memory that has been freed.

Oops.

The easy way to remember the difference between Acquire
and Release
is that Acquire is

typically used when you are acquiring a resource
(in this case, taking a lock),
whereas
Release

is typically used when you are releasing the resource.

As
the MSDN article on acquire and release semantics already notes,
the plain versions of the

interlocked functions impose both acquire
and release semantics.

Bonus reading:
Kang Su
discusses
how VC2005 converts volatile memory accesses
into

acquires and releases.

[Raymond is currently away; this message was pre-recorded.]

Raymond Chen

Follow

http://msdn.microsoft.com/en-us/library/aa490209.aspx
http://blogs.msdn.com/kangsu/
http://blogs.msdn.com/kangsu/archive/2007/07/16/volatile-acquire-release-memory-fences-and-vc2005.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

