
1/2

September 25, 2008

Even if a function doesn’t do anything, you still have to
call it if the documentation says so, because it might do
something tomorrow

devblogs.microsoft.com/oldnewthing/20080925-00

Raymond Chen

If the documentation says that you have to call a function, then you have to call it. It may be

that the function doesn’t do anything, but that doesn’t prevent it from doing something in the

future.

Today’s example is the function GetEnvironmentStrings , which returns you all the

environment variables of the current process in a single block, which you can then study at

your leisure. When you’re finished, you’re supposed to call FreeEnvironmentStrings .

That’s what the documentation says, and if you did that, then you’re in good shape.

However, some people noticed that on Windows NT 4, the Unicode version of the

FreeEnvironmentStrings function didn’t do anything. In other words, the Unicode

environment block didn’t need to be freed. When you called GetEnvironmentStrings , the

kernel just returned you a raw pointer to the real live environment strings (which, since this

is Windows NT, are kept in Unicode internally). Since nothing was allocated, there was

nothing to free.

The problem with this technique was that if somebody called SetEnvironmentVariable in

the meantime, the environment block changed out from under the caller of

GetEnvironmentStrings .

Oops.

To fix this, the GetEnvironmentStrings function was changed to return a copy of the

environment block even if you call the Unicode version. The corresponding Unicode

FreeEnvironmentStrings function frees that environment copy.

Programs that followed the specification and called FreeEnvironmentStrings (even

though it didn’t do anything up until now) were in good shape. Their call to

FreeEnvironmentStrings now frees the memory, and all is right with the world.

https://devblogs.microsoft.com/oldnewthing/20080925-00/?p=20763

2/2

Programs that coded to the implementation rather than the specification are now in a world

of hurt. If they simply skipped the “useless” call to FreeEnvironmentStrings , they will

now find themselves leaking memory. On the other hand, if they gave lip service to

FreeEnvironmentStrings by calling it, but using the memory anyway, they will find

themselves accessing invalid heap memory, and all sorts of havoc can ensue.

There’s sometimes a reason for the rules that seem stupid at first glance. (“Call this function

that doesn’t do anything.”) Changes to the implementation may make them less stupid in the

future.

(Credit goes to my colleague Neill Clift for providing the information that led to today’s

article.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

