
1/4

August 29, 2008

What possible use are those extra bits in kernel handles?
Part 3: New object types

devblogs.microsoft.com/oldnewthing/20080829-00

Raymond Chen

Last time, we saw how
those extra bits can be used to multiplex HANDLE
with other values.

That was a specific case of a more general scenario:
Expanding the handle namespace to

include things that aren’t handles.
(You can also view today’s example as a generalization of

the
sentinel value problem,
where we need to generate an arbitrary number of sentinel values

dynamically.
Actually, multiplexing HANDLE with HRESULT
is also just another special case:

We expanded the handle namespace
to include error codes too.)

As I noted in the base article,
the people who are most interested in this sort of thing are

people
writing low-level class libraries or wrapping kernel objects inside
a larger framework.

Suppose, for example, you are writing a library that manipulates
kernel objects, but you also

have private types of objects (say,
a handle to a remote computer)
that you also want this

library to be able to manipulate.
One way of doing this is to wrap everything inside some base

class
that virtualizes away what type of handle you’re working on:

https://devblogs.microsoft.com/oldnewthing/20080829-00/?p=21033
http://blogs.msdn.com/oldnewthing/archive/2008/08/28/8902173.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/08/27/8898863.aspx

2/4

class ExtendedHandle {

public:

 virtual ExtendedHandleType GetType() = 0;

 virtual ~ExtendedHandle() { }

};

class KernelExtendedHandle : public ExtendedHandle {

public:

 static KernelExtendedHandle *Create(…);

 ExtendedHandleType GetType() { return KernelHandle; }

 HANDLE GetHandle() { return Handle; }

private:

 KernelExtendedHandle(…);

 HANDLE Handle;

};

class RemoteComputerExtendedHandle : public ExtendedHandle {

public:

 static RemoteComputerExtendedHandle *Create(…);

 ExtendedHandleType GetType() { return RemoteComputer; }

 LPCTSTR GetComputerName() { … }

 … other remote computer methods …

private:

 RemoteComputerExtendedHandle(…);

 … stuff necessary for tracking remote computers …

};

Now, your library spends only 1% of its time manipulating these
private object types;
most of

the time, it’s dealing with regular kernel handles.
In other words,
99% of your objects are of

type KernelExtendedHandle .
What used to be just a HANDLE (4 bytes)
is now a EHANDLE

that in turn points to an 8-byte
structure
(4 bytes for the vtable and
4 bytes for the HANDLE).

Your memory requirements have tripled and you added
another level of indirection (costing

you locality),
just for that 1% case.

But you can do better if you have those extra bits to play with.
Since 99% of the objects you’re

wrapping are just plain old kernel
handles, you can say that
if the bottom bit is clear, then it’s

just a kernel handle,
and if the bottom bit is set, then the upper bits tell us what
we are really

operating on.

3/4

typedef void *EHANDLE;

BOOL IsKernelHandle(EHANDLE Handle)

{

 return (!((INT_PTR)Handle & 1));

}

EHANDLE CreateHandleFromKernelHandle(HANDLE Handle)

{

 // if this assertion fires, then somebody tried to

 // use an invalid kernel handle!

 assert((!((INT_PTR)Handle & 1));

 return (EHANDLE)Handle;

}

EHANDLE CreateHandleFromExtendedHandle(ExtendedHandle Handle)

{

 // if this assertion fires, then somebody allocated

 // a misaligned ExtendedHandle!

 assert(!((INT_PTR)Handle & 1));

 return (EHANDLE)((INT_PTR)Handle | 1));

}

ExtendedHandle *GetExtendedHandle(EHANDLE Handle)

{

 assert(!IsKernelHandle(Handle));

 return (ExtendedHandle*)((INT_PTR)Handle & ~1);

}

ExtendedHandleType GetType(EHANDLE Handle)

{

if (IsKernelHandle(Handle)) {

 return KernelHandleType;

} else {

 return GetExtendedHandle(Handle)->GetType();

}
}

void ECloseHandle(EHANDLE Handle)

{

 if (IsKernelHandle(Handle))

 {

 CloseHandle(GetKernelHandle(Handle));

 } else {

 delete GetExtendedHandle(Handle);

 }

}

4/4

Now the cost of a wrapped kernel handle is just 4 bytes:
4 bytes for the EHANDLE , which also

doubles
as the actual kernel handle.
The cost of wrapped pseudo-handles is the same as

before
(4 bytes for the EHANDLE , plus the size
of the corresponding XxxExtendedHandle

class).
We used the trick from last time in order to pack 33 bits
into only 32 bits:
Since we

know that the bottom bit of both kernel HANDLE s
and ExtendedHandle pointers are zero,

we can use it as a discriminator.

If you are not confident that your ExtendedHandle
classes all use aligned pointers, you can

use a different packing
mechanism by using your own handle translation table:

ExtendedHandle *ExtendedHandleTable;

ExtendedHandle *GetExtendedHandle(EHANDLE Handle)

{

 assert(!IsKernelHandle(Handle));

 return ExtendedHandleTable[(INT_PTR)Handle >> 1];

}

Using this technique, the upper 31 bits of an EHANDLE
which refers to an ExtendedHandle

is an index into a
privately-managed table of ExtendedHandle objects.

This secondary handle table technique
is entirely analogous to
the trick which one Posix

library uses
to distinguish “real” process IDs from “virtual” process IDs,
except that they are

relying on undocumented behavior because
the bottom bits of process IDs are not

guaranteed to be zero!

So there you have it, three scenarios where you can take advantage
of knowing that
the

bottom bits of kernel handles are always zero.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2008/02/28/7925962.aspx#7946255
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

