
1/2

August 14, 2008

The implementation of iterators in C# and its
consequences (part 3)

devblogs.microsoft.com/oldnewthing/20080814-00

Raymond Chen

I mentioned that
there was an exception
to the general statement that the conversion of an

iterator into
traditional C# code is something you could have done yourself.
That’s true, and

it was also a pun,
because the exception is exception handling.

If you have a try … finally block in your iterator,
the language executes the finally

block under the following
conditions:

After the last statement of the try block is executed.
(No surprise here.)

When an exception propagates out of the try block.
(No surprise here either.)

When execution leaves the try block via
 yield break .

When the iterator is Dispose d and the iterator body
was trapped inside a try block

at the time.

That last case can occur if somebody decides to abandon the enumerator
before it is finished.

IEnumerable<int> CountTo10()

{

try {

 for (int i = 1; i <= 10; i++) {

 yield return i;

 }

} finally {

 System.Console.WriteLine(“finally”);

}
}

foreach (int i in CountTo10()) {

System.Console.WriteLine(i);

if (i == 5) break;

}

This code fragment prints “1 2 3 4 5 finally”.

https://devblogs.microsoft.com/oldnewthing/20080814-00/?p=21243
http://blogs.msdn.com/oldnewthing/archive/2008/08/12/8849519.aspx

2/2

If you think about it, this behavior is completely natural.
You want the finally block to

execute when
the try block is finished executing, either by normal
or abnormal means.

Although control leaves the try block
during the yield return , it comes back when
the

caller asks for the next item from the enumerator, so execution
of the try block isn’t

finished yet.
The try is finished executing after the last statement
completes,
an exception

is thrown past it,
or execution is abandoned when the enumerator is prematurely destroyed.

And this is exactly what you want when you use the finally
block to clean up resources

used by the try block.

Now, technically, you can write this yourself without
using iterators, but it’s pretty ugly.

You’ll need more internal state variables to keep track of whether
the try block is still

active and whether the exit
of the try block is temporary (due to yield return)
or

permanent.
It’s a real pain in the neck, however, so you probably are better off
letting the

compiler do the work for you.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

