
1/4

August 12, 2008

The implementation of iterators in C# and its
consequences (part 1)

devblogs.microsoft.com/oldnewthing/20080812-00

Raymond Chen

Like
anonymous methods,
iterators in C# are very complex syntactic sugar.
You could do it

all yourself (after all, you did have to do
it all yourself in earlier versions of C#),
but the

compiler transformation makes for much greater convenience.

The idea behind iterators is that they take a function with
yield return
statements
(and

possible some yield break statements)
and convert it into a state machine.
When you

yield return , the state of the function is
recorded, and execution resumes from that state

the next time the
iterator is called upon to produce another object.

Here’s the basic idea:
All the local variables of the iterator (treating iterator parameters
as

pre-initialized local variables, including the hidden this
parameter)
become member

variables of a helper class.
The helper class also has an internal state member that keeps

track of where execution left off and an internal current
member that holds the object most

recently enumerated.

class MyClass {

int limit = 0;

public MyClass(int limit) { this.limit = limit; }

public IEnumerable<int> CountFrom(int start)

{
 for (int i = start; i <= limit; i++) {

 yield return i;

 }

}
}

The CountFrom method produces an integer
enumerator that spits out the integers starting

at start
and continuing up to and including limit .
The compiler internally converts this

enumerator into
something like this:

https://devblogs.microsoft.com/oldnewthing/20080812-00/?p=21273
http://blogs.msdn.com/oldnewthing/archive/2006/08/02/686456.aspx
http://blogs.msdn.com/ericgu/archive/2006/03/08/546296.aspx

2/4

class MyClass_Enumerator : IEnumerable<int> {

 int state$0 = 0;// internal member

 int current$0; // internal member

 MyClass this$0; // implicit parameter to CountFrom

 int start; // explicit parameter to CountFrom

 int i; // local variable of CountFrom

 public int Current {

 get { return current$0; }

 }

 public bool MoveNext()

 {

 switch (state$0) {

 case 0: goto resume$0;

 case 1: goto resume$1;

 case 2: return false;

 }

resume$0:;

 for (i = start; i <= this$0.limit; i++) {

 current$0 = i;

 state$0 = 1;

 return true;

resume$1:;

 }

 state$0 = 2;

 return false;

 }

 … other bookkeeping, not important here …

}

public IEnumerable<int> CountFrom(int start)

{
 MyClass_Enumerator e = new MyClass_Enumerator();

 e.this$0 = this;

 e.start = start;

 return e;

}

The enumerator class is auto-generated by the compiler
and, as promised, it contains two

internal members for the
state and current object,
plus a member for each parameter

(including the hidden this parameter),
plus a member for each local variable.
The

Current property merely returns the current object.
All the real work happens in

MoveNext .

3/4

To generate the MoveNext method, the compiler
takes the code you write and performs a

few transformations.
First, all the references to variables and parameters need to
be adjusted

since the code moved to a helper class.

this becomes this$0 ,
because inside the rewritten function, this
refers to the

auto-generated class, not the original class.

m becomes this$0.m when
 m is a member of the original class
(a member variable,

member property, or member function).
This rule is actually redundant with the

previous rule,
because writing the name of a
class member m without a prefix is just

shorthand for this.m .

v becomes this.v when
 v is a parameter or local variable.
This rule is actually

redundant, since writing v
is the same as this.v , but I call it out
explicitly so you’ll

notice that the storage for the variable
has changed.

The compiler also has to deal with all those yield return
statements.

Each yield return x becomes

current$0 = x;

state$0 = n;

return true;

resume$n:;

where n is an increasing number starting at 1.

And then there are the
 yield break statements.

Each yield break becomes

state$0 = n2;

return false;

where n2 is one greater than the highest state
number used by all the yield return

statements.
Don’t forget that there is also an implied yield break
at the end of the

function.

Finally, the compiler puts the big state dispatcher at the top of the
function.

4/4

At the start of the function, insert

switch (state$0) {

case 0: goto resume$0;

case 1: goto resume$1;

case 2: goto resume$2;

…

case n: goto resume$n;

case n2: return false;

}

with one case statement for each state,
plus the initial zero state and the final n2

state.

Notice that this transformation is quite different from
the enumeration model we built based

on coroutines and fibers.
The C# method is far more efficient in terms of memory usage
since

it doesn’t consume an entire stack (typically a megabyte in size)
like the fiber approach does.

Instead it just borrows the stack of the caller,
and anything that it needs to save across calls

to MoveNext
are stored in a helper object (which goes on the heap rather than the stack).

This fake-out is normally quite effective—most
people don’t even realize that it’s happening—

but there are places
where the difference is significant, and we’ll see that shortly.

Exercise:
Why do we need to write
 state$0 = n2; and add the
 case n2: return

false; ?
Why can’t we just transform each yield break
into return false; and stop

there?

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2004/12/31/344799.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

