
1/3

August 6, 2008

What’s with this MSH_MOUSEWHEEL message?
devblogs.microsoft.com/oldnewthing/20080806-00

Raymond Chen

The hardware folks had this mouse wheel thing they were making,
and they needed a way to

get applications to support the mouse.
Now, one way of doing this was to say,
“Well, we’ll

start selling this wheel mouse,
but no applications can use it until the next version of

Windows
is released, one that supports the wheel.”
Of course, that would have meant waiting

until Windows NT 4
came out, and who know when that would be.
Plus it meant that people

would have to upgrade Windows
in order to take advantage of their fancy new mouse.
As you

can imagine, they weren’t too pleased with the
“wait a few years” plan.

In the interim, they proposed a stopgap mechanism for applications
to respond to the mouse

wheel.
Enter the zmouse.h header file and its
 MSH_MOUSEWHEEL registered message.
When

you installed the wheel mouse driver,
it listened for wheel events from the hardware and

posted
this new message when the mouse wheel turned,
and applications could just respond

to either
the WM_MOUSEWHEEL message
(if running on a version of Windows that supported

the message)
or the MSH_MOUSEWHEEL message
(if running on an older version of Windows

that didn’t).
Unfortunately, the two messages behave differently,
so it’s not a simple matter of

writing

if (uMsg == WM_MOUSEWHEEL || uMsg == g_msgWheel) {

… do wheel stuff …

}

(These next few paragraphs summarize what is
already spelled out in MSDN;
you can skip

them if you already know how the messages work.)

First, let’s look at WM_MOUSEWHEEL .
This message is delivered to the window that has focus

(in the SetFocus sense).
If the window procedure doesn’t handle the message
and just

passes it through to the DefWindowProc function,
then the DefWindowProc function

forward the message
to the window’s parent.
In this way, the WM_MOUSEWHEEL message

automatically “bubbles outward” from the focus window
up the parent chain until somebody

finally handles the
message (or it goes all the way to the top without being handled at all).

https://devblogs.microsoft.com/oldnewthing/20080806-00/?p=21353
http://msdn2.microsoft.com/en-us/library/ms645617.aspx

2/3

On the other hand, the MSH_MOUSEWHEEL message
works from the outside in.
It is delivered

to the foreground window
(in the SetForegroundWindow sense).
If the window procedure

doesn’t want to handle the message,
it can forward the message to child windows of its

choice,
until one of them returns TRUE to indicate that
the message was handled, or until no

further candidates exist.

I’ll summarize these differences in a table,
since people seem to like tables so much.

WM_MOUSEWHEEL MSH_MOUSEWHEEL

Propagation direction Inside-out Outside-in

Propagation mechanism DefWindowProc SendMessage

Handling Automatic Manual: Application checks return
value

from child to determine what to do
next

Return value if processed Zero TRUE

Return value if not
processed

DefWindowProc FALSE

Notice that WM_MOUSEWHEEL is much simpler,
and the inside-out propagation mechanism

retains the spirit of
other messages such
as WM_CONTEXTMENU
and WM_SETCURSOR .
Why

can’t MSH_MOUSEWHEEL
do it the same way?

Well, first of all, MSH_MOUSEWHEEL doesn’t have
the luxury of being able to modify the

DefWindowProc
function.
After all, that’s the whole point of introducing the message
in the

first place,
because we’re trying to add wheel support to an older operating
system that

predated mouse wheels.
Put in other words,
if we could modify DefWindowProc to handle

the
 MSH_MOUSEWHEEL message, then we wouldn’t have
needed the MSH_MOUSEWHEEL

message to begin with;
we would’ve just modified DefWindowProc to handle
the

WM_MOUSEWHEEL message.

The argument in the previous paragraph is a frustratingly common one.
Given a problem X

and a workaround Y,
somebody will ask,
“Why didn’t you use method Z?”
If you look at

method Z, though,
you’ll see that it suffers from the exact same problem X.

Here’s a real-world example of the “confused workaround”:

“Since the I-90 bridge is closed, I can’t take the 550 bus to get
from Bellevue to Safeco Field.

Instead, I’m going to take the 230 to Redmond, and then change
to the 545.”

3/3

— Well, that’s silly. Why not take the 245 to Eastgate,
and then change to the 554?
It’s a lot

faster.

“Um, the 554 uses the I-90 bridge, too.”

Okay, so you can’t change DefWindowProc ,
but why not at least propagate the

MSH_MOUSEWHEEL
from the inside out instead of from the outside in?

Starting with the focus window assumes you can even find out
what the focus window is,
but

if you had paid attention to the
Five Things Every Win32 Programmer Should Know,
you

would have known that each thread
has its own focus window.
(Not nitpickily true, but true

enough.)
Consequently, when
the helper program that injects MSH_MOUSEWHEEL messages

calls GetFocus , it just gets its own focus window,
not the focus window of the thread that

controls the foreground window.
(Remember, we’re talking 1996, long before the

GetGUIThreadInfo function was invented.
History buffs can find out more from
Meet The

Inventor of the Mouse Wheel.)
Since inside-out was off the table,
that pretty much forced

outside-in.

Now that you know how mouse wheel messages work, you can explain the
behavior this

customer is seeing:

I’m seeing the WM_MOUSEWHEEL message being delivered
to the wrong child window.
I have a
parent window with two children.
Even though I move the mouse pointer over child 1,
the
WM_MOUSEWHEEL goes to child 2.

Raymond Chen

Follow

https://channel9.msdn.com/Showpost.aspx?postid=116704
http://www.codinghorror.com/blog/archives/000865.html
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

