
1/4

July 16, 2008

The evolution of menu templates: 32-bit extended menus
devblogs.microsoft.com/oldnewthing/20080716-00

Raymond Chen

At last we reach the 32-bit extended menu template.
Introduced in Windows 95, this remains

the
most advanced menu template format through Windows Vista.
As you might expect, the

32-bit extended menu template is
just a 32-bit version of the
16-bit extended menu template,

so if you’ve been following along, you should find no real
surprises here;
all the pieces have

been telegraphed far in advance.

The header remains the same:

struct MENUHEADER32 {

WORD wVersion;

WORD cbHeaderSize;

BYTE rgbExtra[cbHeaderSize-4];

};

The differences here from the 32-bit classic menu template header
are analogous to the

changes between the 16-bit classic menu template
and the 16-bit extended menu template.

The wVersion is set to one for extended templates,
and the cbHeaderSize includes the

wVersion
and cbHeaderSize fields themselves,
so the number of extra bytes is four less

than the value specified
in cbHeaderSize .
There is one additional constraint:
The

cbHeaderSize must be a multiple of four
because extended menu item templates must be

aligned on DWORD
boundaries.
But as with 32-bit classic templates, the
 cbHeaderSize

must be four in order to avoid a bug
in the Windows 95 family of operating systems.

After the header comes the menu itself,
and like the 16-bit extended menu template,
there is

a prefix structure that comes before the items
and which serves the same purpose as in the

16-bit extended menu template:

struct MENUPREFIX32 {

DWORD dwContextHelpID;

};

The list of menu items is basically the same as the 16-bit version,
just with some expanded

fields.

https://devblogs.microsoft.com/oldnewthing/20080716-00/?p=21603
http://blogs.msdn.com/oldnewthing/archive/2008/07/15/8732375.aspx

2/4

struct MENUITEMEX32 {

DWORD dwType;

DWORD dwState;

DWORD dwID;

WORD wFlags;

WCHAR szText[]; // null terminated UNICODE string

};

As we saw before when we studied the 16-bit extended menu template,
the big difference

between classic and extended menu items
is that classic menu items were designed for the

InsertMenu function,
whereas extended menu items were designed for the

InsertMenuItem function.
The dwType , dwState , and
 dwID members correspond to

the fType , fState , and
 wID
members of the MENUITEMINFO structure,
and the the

szText goes into the
 dwItemData if the item requires a string.

One additional quirk of 32-bit extended menu item templates
which the 16-bit version does

not have is that 32-bit
extended menu item templates must begin on a 32-bit boundary;

therefore, you must insert a WORD of padding
after the menu text if the text is an odd

number of characters
long.
(Fourteen bytes of the fixed-length part of the MENUITEMEX32

plus an odd number of WCHAR s
plus the null terminator WCHAR leaves a value that is

2 mod 4; therefore, you need an additional WORD
to return to a DWORD boundary.)

The wFlags field has the same values as in the
16-bit extended menu item templates; the

high byte is always zero.
And, as before, if the bottom bit is set, then the menu item describes

a pop-up submenu, which is inserted directly after
the extended menu item template.

That’s all there is to it.
Let’s see how our example menu resource looks when converted
to a

32-bit extended menu template:

1 MENUEX 1000

BEGIN

 POPUP “&File”, 200,,, 1001

 BEGIN

 MENUITEM “&Open\tCtrl+O”, 100

 MENUITEM “”, -1, MFT_SEPARATOR

 MENUITEM “&Exit\tAlt+X”, 101

 END

 POPUP “&View”, 201,,, 1002

 BEGIN

 MENUITEM “&Status Bar”, 102,, MFS_CHECKED

 END

END

First comes the header, whose contents are fixed:

0000 01 00 // wVersion = 1

0002 04 00 // cbHeaderSize = 4

3/4

Before the list of extended menu item templates, we have the
context help ID:

0004 E8 03 00 00 // dwContextHelpID = 1000

Since our first menu item is a pop-up submenu,
the wFlags will have the bottom bit set:

0008 00 00 00 00 // dwType = MFT_STRING

000C 00 00 00 00 // dwState = 0

0010 C8 00 00 00 // wID = 200

0014 01 00 // wFlags = “pop-up submenu”

0016 26 00 46 00 69 00 6C 00 65 00 00 00

 // “&File” + null terminator

0022 00 00 // Padding to restore alignment

Notice the two bytes of padding so that we return to
 DWORD alignment.

The wFlags promised a pop-up submenu, so here it is.

0024 E9 03 00 00 // dwContextHelpID = 1001

// First item

0028 00 00 00 00 // dwType = MFT_STRING

002C 00 00 00 00 // dwState = 0

0030 64 00 00 00 // dwID = 100

0034 00 00 // wFlags = 0

0036 26 00 4F 00 70 00 65 00 6E 00 09 00

 43 00 74 00 72 00 6C 00 2B 00 4F 00 00 00

 // “&Open\tCtrl+O” + null terminator

// Second item

0050 00 08 00 00 // dwType = MFT_SEPARATOR

0054 00 00 00 00 // dwState = 0

0058 FF FF FF FF // dwID = -1

005C 00 00 // wFlags = 0

005E 00 00 // “”

// Third (final) item

0060 00 00 00 00 // dwType = MFT_STRING

0064 00 00 00 00 // dwState = 0

0068 65 00 00 00 // dwID = 101

006C 80 00 // wFlags = “this is the last menu item”

0070 26 00 45 00 78 00 69 00 74 00 09 00

 41 00 6C 00 74 00 2B 00 58 00 00 00

 // “&Exit\tAlt+X” + null terminator

0086 00 00 // Padding to restore alignment

When we see the “end” marker, we pop one level back to the main menu.

4/4

0088 00 00 00 00 // dwType = MFT_STRING

008C 00 00 00 00 // dwState = 0

0090 C9 00 00 00 // dwID = 201

0094 81 00 // wFlags = “pop-up submenu” |

 // “this is the last menu item”

0096 26 00 56 00 69 00 65 00 77 00 00 00

 // “&View” + null terminator

00A2 00 00 // Padding to restore alignment

The set bottom bit in the wFlags indicates
that another pop-up submenu is coming,
and the

“end” marker means that once the submenu is finished,
we are done.

00A4 EA 03 00 00 // dwContextHelpID = 1002

00A8 00 00 00 00 // dwType = MFT_STRING

00AC 08 00 00 00 // dwState = MFS_CHECKED

00B0 66 00 00 00 // dwID = 102

00B4 80 00 // wFlags = “this is the last menu item”

00B6 26 00 53 00 74 00 61 00 74 00 75 00

 73 00 20 00 42 00 61 00 72 00 00 00

 // “&Status Bar” + null terminator

00CE 00 00 // Padding to restore alignment

Since the pop-up submenu has only one item, the first item is also
the last.

That’s it for the evolution of menu templates,
starting from a series of calls to the ANSI

version of
 InsertMenu
to a series of calls to the Unicode version of
 InsertMenuItem .

Menu templates get much less attention than dialog templates,
but if you wanted to know

how they work, well, there you have it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

