
1/1

June 6, 2008

Why does OpenProcess succeed even when I add three
to the process ID?

devblogs.microsoft.com/oldnewthing/20080606-00

Raymond Chen

A customer noticed that if you add three to a process ID and pass it to the OpenProcess

function, it still succeeds. Why is that? Well, first of all, I need to say up front that the

behavior you’re seeing is an artifact of the implementation and is not part of the contract.

You’re passing intentionally invalid parameters, what did you expect? The context of this

question is “We’re seeing this behavior and we can’t explain it,” not “We’re using this trick

and want confirmation that it’s okay.” Now, you actually know the answer to this already.

As we saw earlier, for convenience, the Windows NT kernel uses the handle manager to

parcel out process and thread IDs, and the handle manager ignores the bottom two bits of

handles. Therefore, adding three has no effect on the process-id-to-object mapping. This

mechanism is peculiar to kernels based on Windows NT. Versions of Windows derived from

the Windows 95 kernel have a different mechanism for mapping process IDs to processes,

and that mechanism is unflinchingly rigid. If you add three, the OpenProcess function will

reject your process ID as invalid. And I don’t know how Windows CE handles it. Again, I wish

to emphasize that the behavior you see in Windows NT-based kernels is just an

implementation artifact which can change at any time. Who knows, maybe once they read

this entry, the kernel folks will go in and change OpenProcess to be even more strict.

Pre-emptive Yuhong Bao comment: “Process IDs on Windows 95 are a pointer to an

internal data structure XORed with a constant to obfuscate them.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20080606-00/?p=22043
http://blogs.msdn.com/oldnewthing/archive/2006/03/20/555511.aspx
http://www.northernattack.com/archives/drug-testing/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

