
1/4

May 28, 2008

Reading a contract from the other side:
SHSetInstanceExplorer and SHGetInstanceExplorer

devblogs.microsoft.com/oldnewthing/20080528-00

Raymond Chen

Shell extensions that create worker threads need to call the
 SHGetInstanceExplorer

function
so that Explorer will not exit while the worker thread is still running.
When your

worker thread finishes, you release the IUnknown
that you obtained to tell the host

program,
“Okay, I’m done now, thanks for waiting.”

You can read this contract from the other side.
Instead of thinking of yourself as the shell

extension running
inside a host program,
think of yourself as the host program that has a

shell extension
running inside of it.
Consider
a simple program
that displays the properties of

a file,
or at least tries to:

#include <windows.h>

#include <shellapi.h>

#include <tchar.h>

int __cdecl _tmain(int argc, TCHAR **argv)

{

 SHELLEXECUTEINFO sei = { sizeof(sei) };

 sei.fMask = SEE_MASK_FLAG_DDEWAIT | SEE_MASK_INVOKEIDLIST;

 sei.nShow = SW_SHOWNORMAL;

 sei.lpVerb = TEXT("properties");

 sei.lpFile = TEXT("C:\\Windows\\Explorer.exe");

 ShellExecuteEx(&sei);

 return 0;

}

Oh dear!
When you run this program, nothing happens.
Well, actually, something did

happen, but the program exited
too fast for you to see it.
To slow things down, add the line

 MessageBox(NULL, TEXT("Waiting"), TEXT("Title"), MB_OK);

right before the return 0 .
Run the program again, and this time the properties dialog

appears, as well as the message box.
Aha, the problem is that our program is exiting while the

property
sheet is still active.
(Now delete that call to MessageBox before something
stupid

happens.)

https://devblogs.microsoft.com/oldnewthing/20080528-00/?p=22163
http://blogs.msdn.com/oldnewthing/archive/2004/11/26/270710.aspx

2/4

The question now is how to know when the property sheet is
finished so we can exit.
That’s

where SHSetInstanceExplorer comes in.
The name “Explorer” in the function name is

really a placeholder
for “the host program”;
it just happens to be called “Explorer” because

the function
was written from the point of view of the shell extension,
and the host program

is nearly always Explorer.exe.

In this case, however, we are the host program, not Explorer.
The SHSetInstanceExplorer

lets you register a
free-threaded IUnknown that shell extensions can
obtain by calling

SHGetInstanceExplorer .
Following COM reference counting conventions,
the

SHGetInstanceExplorer
performs an AddRef() on the IUnknown
that it returns;
the

shell extension’s worker thread
performs the corresponding Release()
when it is finished.

All that is required of the IUnknown that you
pass to SHSetInstanceExplorer is that it be

free-threaded; in other words, that it support being called
from multiple threads.
This means

managing the “process reference count”
with interlocked functions rather than boring ++

and -- operators.
Of course, in practice, you also need to tell your main program
“Okay, all

the shell extensions are finished; you can exit now”
when the reference count drops to zero.

There are many ways to accomplish this task.
Here’s one that I threw together just now.
I

didn’t think too hard about this class;
I’m not positioning this as the best way of

implementing it,
or even as a particularly good one.
The purpose of this article is to show the

principle behind
process references.
Once you understand that,
you are free to go ahead and

solve the problem your own way.
But here’s a way.

3/4

#include <shlobj.h>

class ProcessReference : public IUnknown {

public:

 STDMETHODIMP QueryInterface(REFIID riid, void **ppv)

 {

 if (riid == IID_IUnknown) {

 ppv = static_cast<IUnknown>(this);

 AddRef();

 return S_OK;

 }

 *ppv = NULL; return E_NOINTERFACE;

 }

 STDMETHODIMP_(ULONG) AddRef()

 { return InterlockedIncrement(&m_cRef); }

 STDMETHODIMP_(ULONG) Release()

 {

 LONG lRef = InterlockedDecrement(&m_cRef);

 if (lRef == 0) PostThreadMessage(m_dwThread, WM_NULL, 0, 0);

 return lRef;

 }

 ProcessReference()

 : m_cRef(1), m_dwThread(GetCurrentThreadId())

 { SHSetInstanceExplorer(this); }

 ~ProcessReference()

 {

 SHSetInstanceExplorer(NULL);

 Release();

 MSG msg;

 while (m_cRef && GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 }

private:

 LONG m_cRef;

 DWORD m_dwThread;

};

The idea behind this class is that the main thread (and only
the main thread) creates it on the

stack.
When constructed, the object registers itself as the
“process IUnknown “;
any shell

extensions that call SHGetInstanceExplorer
will get a pointer to this object.
When the

object is destructed, it unregisters itself as the process
reference (to avoid dangling

references) and
waits for the reference count
to drop to zero.
Notice that the Release

method posts a dummy thread
message so that the “waiting for the reference count to go to

zero”
message loop will wake up.

In a sense, this is backwards from the way normal COM objects work,
which operate under

the principle of “When the reference count drops to
zero, the object is destructed.”
We turn it

around and code it up as
“when the object is destructed, it waits for the reference count
to

4/4

drop to zero.”
If you wanted to do it the more traditional COM way,
you could have the main

thread go into a wait loop and have
the object’s destructor signal the main thread.
I did it this

way because it makes using the class very convenient.

Now that we have a process reference object, it’s a simple matter
of adding it to our main

thread:

int __cdecl _tmain(int argc, TCHAR **argv)

{

 ProcessReference ref;

 ...

With this modification, the program displays the property sheet
and patiently waits for the

property sheet to be dismissed
before it exits.

Exercise: Explain how the object behaves if we initialized
the reference count to zero and

deleted the call to Release
in the destructor.

Bonus reading:
Do you know when your destructors run? Part 2.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2004/05/21/136701.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

