
1/2

May 9, 2008

Data breakpoints are based on the linear address, not the
physical address

devblogs.microsoft.com/oldnewthing/20080509-00

Raymond Chen

When you ask the debugger to set a read or write breakpoint, the breakpoint fires only if the

address is read from or written to by the address you specify. If the memory is mapped to

another address and modified at that other address, then your breakpoint won’t see it.
For

example, if you have multiple views on the same data, then modifications to that data via

alternate addresses will not trigger the breakpoint.
The hardware breakpoint status is part of

the processor context, which is maintained on a per-thread basis. Each thread maintains its

own virtualized hardware breakpoint status. You don’t notice this in practice because

debuggers are kind enough to replicate the breakpoint state across all threads in a process so

that the breakpoint fires regardless of which thread triggers it. But that replication typically

doesn’t extend beyond the process you’re debugging; the debugger doesn’t bother replicating

your breakpoints into other processes! This means that if you set a write breakpoint on a

block of shared memory, and the write occurs in some other process, your breakpoint won’t

fire since it’s not your process that wrote to it.
When you call into kernel mode, there is

another context switch, this time between user mode and kernel mode, and the kernel mode

context of course doesn’t have your data breakpoint. Which is a good thing, because if that

data breakpoint fired in kernel mode, how is your user-mode debugger expected to be able to

make any sense of it? The breakpoint fired when executing code that user mode doesn’t have

permission to access, and it may have fired while the kernel mode code owned an important

critical section or spinlock, a critical section the debugger itself may very well need. Imagine

if the memory were accessed by the keyboard driver. Oops, now your keyboard processing

has been suspended. Even worse, what if the memory were accessed by a a hardware

interrupt handler? Hardware interrupt handlers can’t even access paged memory, much less

allow user-mode code to run.
This “program being debugged takes a lock that the debugger

itself needs” issue isn’t usually a problem when a user-mode debugger debugs a user-mode

process, because the locks held by a user-mode process typically affect only that process. If a

process takes a critical section, sure that may deadlock the process, but the debugger is not

part of the process, so it doesn’t care.
Of course, the “debugger is its own world” principle

falls apart if the debugger is foolish enough to require a lock that the program being

debugged also uses. Debugger authors therefore must be careful to avoid these sorts of cross-

process dependencies. (News flash: Writing a debugger is hard.) You can still run into trouble

https://devblogs.microsoft.com/oldnewthing/20080509-00/?p=22383
http://blogs.msdn.com/oldnewthing/archive/2003/10/07/55194.aspx


2/2

if the program being debugged has done something with global consequences like create a

fullscreen topmost window (thereby covering the debugger) or installed a global keyboard

hook (thereby interfering with typing). If you’ve tried debugging a system service, you may

have run into this sort of cross-process deadlock. For example, if you debug the service that is

responsible for the networking client, and the debugger tries to access the network (for

example, to load symbols), you’ve created a deadlock since the debugger needs to access the

network, which it can’t do because the networking service is stopped in the debugger.

Hardware debugging breakpoints are a very convenient tool for chasing down bugs, but you

have to understand their limitations.

Additional reading: Data breakpoint oddities.

Raymond Chen

Follow







http://blogs.msdn.com/mithuns/archive/2006/02/28/540902.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

