
1/2

April 24, 2008

User interface code + multi-threaded apartment = death
devblogs.microsoft.com/oldnewthing/20080424-00

Raymond Chen

There are single-threaded apartments and multi-threaded apartments. Well, first there were

only single-threaded apartments. No wait, let’s try that again.

First, applications had only one thread. Remember, 16-bit Windows didn’t have threads.

Each process had one of what we today call a thread, end of story. Compatibility with this

ancient model still exists today, thanks to the dreaded “main” threading model. The less said

about that threading model the better.

OLE was developed back in the 16-bit days, so it used window messages to pass information

between processes, there being no other inter-process communication mechanism available.

When you initialized OLE, it created a secret OleMainThreadWnd window, and those secret

windows were used to communicate between processes (and in Win32, threads). As we

learned some time ago, window handles have thread affinity, which means that these

communication windows have thread affinity, which means that OLE has thread affinity.

When you made a call to an object that belonged to another apartment, OLE posted a

message to the owner thread’s secret OleMainThreadWnd window to tell it what needs to be

done, and then it went into a private message loop waiting for the owner thread to do the

work and post the results back.

Meanwhile, the OLE team realized that there were really two parts to what they were doing.

There was the low-level object and interface management stuff (IUnknown ,

CoMarshalInterThreadInterfaceInStream) and the high-level “object linking and

embedding” stuff (IOleWindow , IOleDocument) that was the impetus for the OLE effort

in the first place. The low-level stuff got broken out into a functional layer known as COM;

the high-level stuff kept the name OLE.

Breaking the low-level and high-level stuff apart allowed the low-level stuff to be used by

non-GUI programs, which for quite some time were eyeing that object management

functionality with some jealousy. As a result, COM grew two personalities, one focused on the

GUI customers and another focused on the non-GUI customers. For the non-GUI customers,

additional functionality such as multi-threaded apartments were added, and since the

https://devblogs.microsoft.com/oldnewthing/20080424-00/?p=22603
https://devblogs.microsoft.com/oldnewthing/20040602-00/?p=39053
https://devblogs.microsoft.com/oldnewthing/20051010-09/?p=33843

2/2

customers didn’t do GUI stuff, multi-threaded apartments weren’t burdened by the GUI

rules. They didn’t post messages to communicate with each other; they used kernel objects

and WaitForSingleObject . Everybody wins, right?

Well, yes, everybody wins, but you have to know what side your bread is buttered on. If you

initialize a GUI thread as a multi-threaded apartment, you have violated the assumptions

under which multi-threaded apartments were invented! Multi-threaded apartments assume

that they are not running on GUI threads since they don’t pump messages; they just use

WaitForSingleObject . This not only clogs up broadcasts, but it can also deadlock your

program. The thread that owns the object might try to send a message to your thread, but

your thread can’t receive the message since it isn’t pumping messages.

That’s why COM objects involved with user interface programming nearly always require a

single-threaded apartment and why OleInitialize initializes a single-threaded apartment.

Because multi-threaded apartments were designed on the assumption that there was no user

interface. Once you’re doing user interface work, you have to use a single-threaded

apartment.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20041213-00/?p=37043
http://web.archive.org/web/20060902130739/http://blogs.msdn.com/oldnewthing/archive/2004/12/06/275659.aspx#276270
http://web.archive.org/web/20060902130739/http://blogs.msdn.com/oldnewthing/archive/2004/12/06/275659.aspx#277587
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

