
1/3

March 31, 2008

You can drag multiple virtual objects, you know
devblogs.microsoft.com/oldnewthing/20080331-00

Raymond Chen

A customer wanted to know how they could find out the
directory that the user dropped a file

onto.
As we already noted,
users can drop files onto things other than directories,
so the

question itself comes with incorrect hidden assumptions.
This is another one of those cases

where you have to ask the
customer, “What are you really trying to do?”
They have a problem

and
solved half of it and are asking
you for help with the second half, the part that makes

little sense.

In this case, what the customer really wanted to do was
create additional supporting files into

the
directory that the user dropped the file onto.
To solve the real problem, all you have to do

is add
virtual objects to the data object the file being dragged.

Let’s illustrate this by adding a second file to our
minimal example of dragging a virtual file.

Actually, let’s make it more interesting.
We’re going to drag one real file plus one virtual file.

Start by adding another file’s contents to our list of clipboard formats:

 enum {

 DATA_FILEGROUPDESCRIPTOR,

 DATA_FILECONTENTS0,

 DATA_FILECONTENTS1,

 DATA_NUM,

 DATA_INVALID = -1,

 };

Of course, we need to initialize the FORMATETC
for the contents of our new virtual file.

CTinyDataObject::CTinyDataObject() : _cRef(1)

{

 SetFORMATETC(&_rgfe[DATA_FILEGROUPDESCRIPTOR],

 RegisterClipboardFormat(CFSTR_FILEDESCRIPTOR));

 SetFORMATETC(&_rgfe[DATA_FILECONTENTS0],

 RegisterClipboardFormat(CFSTR_FILECONTENTS),

 TYMED_ISTREAM, /* lindex */ 0);

 SetFORMATETC(&_rgfe[DATA_FILECONTENTS1],

 RegisterClipboardFormat(CFSTR_FILECONTENTS),

 TYMED_HGLOBAL, /* lindex */ 1);

}

https://devblogs.microsoft.com/oldnewthing/20080331-00/?p=22933
http://blogs.msdn.com/oldnewthing/archive/2007/05/07/2453927.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/03/23/558887.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/03/18/8080183.aspx

2/3

We need to add this second file to our FILEGROUPDESCRIPTOR .
Doing this is trickier because

the FILEGROUPDESCRIPTOR
is a variable-size structure, so we have to declare our own

version
that has room for two files.

// Hard-coded for expository purposes

// (I can't believe I had to write that.)

#define FILETODRAG TEXT("C:\\windows\\clock.avi")

HRESULT CreateFileGroupDescriptor(HGLOBAL *phglob)

{

 union {

 FILEGROUPDESCRIPTOR fgd;

 BYTE buffer[FIELD_OFFSET(FILEGROUPDESCRIPTOR, fgd[2])];

 } u;

 ZeroMemory(&u, sizeof(u));

 u.fgd.cItems = 2;

 // item 0: the file itself

 WIN32_FILE_ATTRIBUTE_DATA wfad;

 if (!GetFileAttributesEx(FILETODRAG, GetFileExInfoStandard,

 &wfad)) {

 return E_FAIL;

 }

 u.fgd.fgd[0].dwFlags = FD_ATTRIBUTES | FD_CREATETIME |

 FD_ACCESSTIME | FD_WRITESTIME | FD_FILESIZE;

 u.fgd.fgd[0].dwFileAttributes = wfad.dwFileAttributes;

 u.fgd.fgd[0].ftCreationTime = wfad.ftCreationTime;

 u.fgd.fgd[0].ftLastAccessTime = wfad.ftLastAccessTime;

 u.fgd.fgd[0].ftLastWriteTime = wfad.ftLastWriteTime;

 u.fgd.fgd[0].nFileSizeHigh = wfad.nFileSizeHigh;

 u.fgd.fgd[0].nFileSizeLow = wfad.nFileSizeLow;

 StringCchCopy(u.fgd.fgd[0].cFileName,

 ARRAYSIZE(u.fgd.fgd[0].cFileName),

 PathFindFileName(FILETODRAG));

 // item 1: The virtual "tag-along" file

 StringCchCopy(u.fgd.fgd[1].cFileName,

 ARRAYSIZE(u.fgd.fgd[0].cFileName),

 TEXT("TagAlong"));

 return CreateHGlobalFromBlob(&u, sizeof(u),

 GMEM_MOVEABLE, phglob);

}

The ad-hoc union declares a block of memory large enough
for a FILEGROUPDESCRIPTOR

that holds two files.
File zero is the file we are dragging, and as a courtesy
(and in violation of

the “doing the absolute least amount of
work necessary” that has guided the series),
we fill in

the file attributes so that when the file is dropped
onto Explorer, the resulting file has the

right metadata.
On the other hand, our virtual file tries to sneak by
with as little as possible,

providing only the mandatory file name.

The last thing to do is hand out the FILEGROUPDESCRIPTOR
and the two files when we are

asked for them.

3/3

HRESULT CTinyDataObject::GetData(FORMATETC *pfe, STGMEDIUM *pmed)

{

 ZeroMemory(pmed, sizeof(*pmed));

 switch (_GetDataIndex(pfe)) {

 case DATA_FILEGROUPDESCRIPTOR:

 pmed->tymed = TYMED_HGLOBAL;

 return CreateFileGroupDescriptor(&pmed->hGlobal);

 case DATA_FILECONTENTS0:

 pmed->tymed = TYMED_ISTREAM;

 return SHCreateStreamOnFile(FILETODRAG, STGM_READ,

 &pmed->pstm);

 case DATA_FILECONTENTS1:

 pmed->tymed = TYMED_HGLOBAL;

 return CreateHGlobalFromBlob("Dummy", 5, GMEM_MOVEABLE,

 &pmed->hGlobal);

 }

 return DV_E_FORMATETC;

}

There you have it, a data object that consists of a file
(FILETODRAG) and a virtual file.
When

the user drops the data object into a folder,
both files are dropped into the destination

directory.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

