
1/2

February 20, 2008

There can be more than one (or zero): Converting a
process to a window

devblogs.microsoft.com/oldnewthing/20080220-00

Raymond Chen

A common question I see is “How do I find the window that corresponds to an HINSTANCE ?”

This question comes pre-loaded with the assumption that there is only one window that

corresponds to an HINSTANCE , which is true for only the most rudimentary of Win32

programs. Even a simple program like Notepad has more than one window with the same

HINSTANCE , as Spy quickly reveals.
But when I hear this question, I smell something

suspicious. First, instance handles are meaningful only when you specify which process

you’re referring to, since an instance handle in Win32 is the base address of a module, and

different processes can have different DLLs loaded at the same base address (thanks to

separate address spaces). Second, I can’t think of any normal scenarios where you’d even

care about finding all the windows that have a particular instance handle, especially since the

instance handle is ignored if the window belongs to a global class, and global classes are

typically the only classes you are interested in anyway when you go snooping into another

process. (After all, if it’s not your process, you don’t really know much of anything about its

private classes.)
But you probably already know that the person asking the question is asking

the wrong question. They almost certainly launched a program with the ShellExecute

function and now want to locate its window so they can do, um, something with it. But you

already know that you can’t do anything meaningful with the HINSTANCE returned by the

ShellExecute function aside from compare it against the number 32, since it’s not really an

instance handle on Win32. That the return value is of type HINSTANCE is just a carry-over

from 16-bit Windows.
But the person who asked the question never got that far in reading the

documentation and just said, “Well, I’ve got an HINSTANCE and I need a window, so can

somebody help me convert this HINSTANCE to a window?” without understanding what’s

really going on. They need Y, but have X (a fake X, but still), so obviously the thing they need

next is a way to convert your X to a Y.
Even if it doesn’t make sense.
It’s like asking for

double-strength placebos.
Okay, so you get past the initial disconnect of asking for the wrong

thing. Say you have a process ID or a thread ID and you want to find the window for that

process or thread.
Again, there can be more than one, and there might be zero. If it’s a

process you’re after, you can enumerate the windows on the desktop and use the

GetWindowThreadProcessId function to determine what thread and process they belong

to. If you are interested in the windows that belong to a thread, you can use the

https://devblogs.microsoft.com/oldnewthing/20080220-00/?p=23383
http://blogs.msdn.com/oldnewthing/archive/2005/04/18/409205.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/05/05/590749.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/11/08/1035971.aspx

2/2

EnumThreadWindows function. Your next task is deciding which of those windows is the one

you want.
When you try to explain this to people, you sometimes get stuck in the Why won’t

you answer my question? cycle.
“I have a thread ID. How do I get the corresponding

window?”
You can use the EnumThreadWindows function to get all the windows on the

thread.
“Yes, I know about EnumThreadWindows , but how do I get the window that I want?”

Well, you haven’t said what you wanted yet.
“I want the window that corresponds to the

thread.”
But which one? How will you decide among all the windows?
“That’s what I’m

asking you!”
But you haven’t yet described what you want.
“I want the window

corresponding to the thread. Why won’t you answer my question?”
Note that saying, “I am

looking for the top-level unowned window” is a step forward, but it still doesn’t uniquely

identify a window. There can be multiple top-level unowned windows in a process. For

example, Explorer typically has lots of top-level unowned windows. There’s the desktop, the

taskbar, your open folder windows, and property sheets. If you ask for “the” top-level

unowned window of Explorer, which one do you want?

Perhaps people are getting the idea that there is a way to uniquely specify “the” window for a

process because the System.Diagnostics.Process object has a property called

MainWindowHandle. The documentation for that property doesn’t do anything to dispel the

notion, either. I have no idea how that property decides among multiple top-level unowned

windows.

Raymond Chen

Follow

http://msdn2.microsoft.com/en-us/library/system.diagnostics.process.mainwindowhandle.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

