
1/1

February 15, 2008

There's more to switching stacks than just loading a new
stack pointer

devblogs.microsoft.com/oldnewthing/20080215-00

Raymond Chen

Sometimes people think they can switch stacks by just loading a new value into the ESP

register. This may seem to work but in fact it doesn’t, because there is more to switching

stacks than just loading a new value into ESP . On the x86, the exception chain is threaded

through the stack, and the exception dispatch code verifies that the exception chain is “sane”

before dispatching an exception. If you summarily yank ESP into a location outside the

stack the operating system assigned to the thread, then the exception chain will appear to be

corrupted, and once the exception dispatch code notices this, it will declare your program to

be unrecoverably corrupted. It can’t even raise an exception to indicate that this has

happened, even if it wanted to, because it doesn’t even know where the exception handlers

are! There are other parts of the system that rely on the stack pointer remaining inside the

correct stack. For example, the code that expands the stack on demand needs to know where

the stack is and how big it can get. (And the ia64 architecture has two stack pointers.) If a

part of the system needs to do work with those values and it notices that the real stack

pointer is “in la-la land”, it will start taking drastic measures (typically by terminating the

program).

If you want to switch stacks, use a fiber. Fibers provide a way to capture the state of a

computation, which includes the instruction pointer and the stack.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20080215-00/?p=23443
http://groups.google.com/groups?selm=uxyOHzIDHHA.4024@TK2MSFTNGP04.phx.gbl
http://groups.google.com/groups?selm=euDyW3IDHHA.4396@TK2MSFTNGP02.phx.gbl
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

